

Физический факультет МГУ им. М.В. Ломоносова

Спецкурс

Физические основы рентгеновского дифракционного анализа

Русаков Вячеслав Серафимович

Москва - 2025

Материалы к Главе III. ОСНОВЫ КИНЕМАТИЧЕСКОЙ ТЕОРИИ РАССЕЯНИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ

- §1. Основные положения кинематической теории рассеяния рентгеновских лучей
- §2. Рассеяние рентгеновского излучения электроном (множитель Томсона и фактор поляризации)
- §3. Рассеяние монохроматического излучения на протяженном объекте. Фурье-трансформанта
- §4. Фурье-трансформанта электронной плотности атома (атомная амплитуда рассеяния)
- §5. Фурье-трансформанта дискретной совокупности (конфигурации) рассеивающих объектов
- §6. Фурье-трансформанта кристалла. Сумма Лауэ
- §7. Интерференционная функция Лауэ
 - 7.1. Условия Лауэ
 - 7.2. Закон Вульфа-Брэгга
 - 7.3. Построение Эвальда
 - 7.4. Связь размера и формы узла обратной решетки с размером и формой кристалла

Материалы к Главе III. ОСНОВЫ КИНЕМАТИЧЕСКОЙ ТЕОРИИ РАССЕЯНИЯ РЕНТГЕНОВСКИХ ЛУЧЕЙ

- §8. Фурье-трансформанта элементарной ячейки (структурная амплитуда). Погасания
 - 8.1. Примитивная элементарная ячейка (решетка Браве)
 - 8.2. Объемно-центрированная элементарная ячейка (решетка Браве)
 - 8.3. Гранецентрированная элементарная ячейка (решетка Браве)
 - 8.4. Базоцентрированная элементарная ячейка (решетка Браве)
- §9. Интенсивность рассеяния регулярными совокупностями атомов
 - 9.1. Требования к объекту исследования.
 - 9.2. Интегральная интенсивность брэгговского отражения.
 - 9.2.1. Кристаллические пластинки (схемы Брэгга и Лауэ). Геометрический фактор Лоренца *L*(9)
 - 9.2.2. Поликристаллический образец. Фактор повторяемости p_{hkl} и геометрический фактор Лоренца $L(\vartheta)$
 - 9.3. Учет поглощения РИ в объекте. Фактор поглощения $A(\vartheta)$
 - 9.4. Поправки на экстинкцию. Коэффициент вторичной экстинкции *g* и первичная экстинкция *E*_{*hkl*}
 - 9.5. Влияние текстуры поликристаллич. образца. Текстурный фактор *T_{hkl}*
 - 9.6. Влияние искажений кристаллической структуры. Тепловое диффузное рассеяние. Фактор Дебая-Валлера $e^{-2W(\vartheta)}$
 - 9.7. Общая формула структурного анализа

§1. Основные положения кинематической теории рассеяния рентгеновских лучей

- **1.** Рассеяние первичного рентгеновского излучения (РИ) упругое рассеяние ($k \neq k_0$, $k = k_0$, $\lambda = \lambda_0$).
- 2. Рассеяние первичного РИ однократное рассеяние: рассеянная волна выходит из кристалла без многократного рассеяния из-за малой толщины кристалла или кристалликов в поликристалле, или блоков в мозаичном кристалле ($\delta \varphi < \sim 0.2^{\circ}$) $< 10^{-4} \div 10^{-3}$ см ($< 1 \div 10$ мкм).
- 3. Интенсивность падающей волны РИ при распространении в кристалле не уменьшается амплитуда рассеянных волн гораздо меньше амплитуды падающей волны (пренебрегаем упругим рассеянием и неупругими процессами поглощением).
- 4. Скорость рентгеновских волн равна скорости света в вакууме (пренебрегаем дисперсией: $\omega(\sim 10^{19} c^{-1}) \gg \omega_0(\sim 10^{15} c^{-1}); 1 n \sim 10^{-6}).$
- 5. Неупругие взаимодействия РИ (фото- и Комптон-эффекты) вместе со вторичными процессами (характеристическим излучением и Ожеэффектами), меняя состояние электронной системы, не вносят существенных возмущений в упругое рассеяние (в том числе в распределение электронной плотности).
- 6. Рассеянием РИ ядром (протонами) можно пренебречь $(m_{\rm n}, m_{\rm p} \gg m_{\rm e}).$

§1. Основные положения кинематической теории рассеяния рентгеновских лучей

- 7. Первичное РИ плоские монохроматич. волны (расстояние рассеивающего объекта от источника r значительно превышает поперечные размеры источника L_s и кристаллита $L_0: L_0 \ll 2\sqrt{\lambda r} \sim 10$ мкм, $\frac{\lambda r}{L_s} > L_0 \Rightarrow r \gg L_s, L_0$ (используются **щели Соллера** – набор близко расположенных параллельных тонких металлических пластинок с высокой поглощающей способностью): $\underline{E(t,r)} = E_0 e^{i(\omega t - k_0 \cdot r + \varphi_0)} = E_0 e^{i\varphi_0} e^{-ik_0 \cdot r} e^{i\omega t} = A_0 e^{-ik_0 \cdot r} e^{i\omega t} = \underline{A(r)} e^{i\omega t}.$ Здесь: E_0 и $A(r) = A_0 e^{-ik_0 \cdot r}$ – амплитуда и комплексная амплитуда напряженности E(t,r) электрического поля волны; ω – частота колебаний, $k_0 = k_0 s_0$ – волновой вектор, $|s_0| = 1$; $k_0 = |k_0| = 2\pi/\lambda_0$ – волновое число. 8. Рассеянные волны – сферические монохроматич. волны (расстояние от
 - <u>рассеивающего центра</u> до точки наблюдения *R* гораздо больше размеров рассеивающего центра $R \gg l_{o}$):

$$\underline{E(t,R)} = \frac{E_0}{R} e^{i(\omega t - kR + \varphi_0)} = \frac{E_0 e^{i\varphi_0} e^{-ikR}}{R} e^{i\omega t} = A_0 \frac{e^{-ikR}}{R} e^{i\omega t} = \underline{A(R)} e^{i\omega t},$$

где $A(R) = A_0 \frac{e^{-ikR}}{R}$ – комплексная амплитуда и $k = 2\pi/\lambda$ – волновое число рассеянной волны.

§1. Основные положения кинематической теории рассеяния рентгеновских лучей

<u>При рассеянии РИ атомом</u>, согласно классической теории, будем предполагать следующее.

1. Электроны атома распределены в объеме, линейные размеры которого l сравнимы с размерами атома l_{at} и с длиной волны падающего излучения: $l \sim l_{at} \sim \lambda_0$ (~1Å) (надо рассматривать рассеяние на электроне).

2. Каждый электрон столь слабо связан в атоме, что **рассеивает как** свободный электрон (сила, действующая на электрон со стороны падающего излучения, значительно больше сил связи электрона в атоме).

3. Частота падающего излучения гораздо больше частоты собственных колебаний электронов в атоме: $\omega(\sim 10^{19} c^{-1}) \gg \omega_0(\sim 10^{15} c^{-1})$ (период орбитального движения электрона гораздо больше периода колебаний падающего излучения).

В результате этих предположений можно утверждать следующее.

1. В направлении падения амплитуда рассеянной волны будет в *Z* **раз больше амплитуды волны, рассеянной одним электроном** (многоволновая интерференция: нет разности хода между волнами, рассеянными различными покоящимися электронами атома, волна первичного излучения плоская; изменение фазы при рассеянии различными электронами атома одинаково: *π*).

2. В направлении под углом к направлению падающего излучения возникнет разность хода между волнами, рассеянными различными электронами атома; в результате их интерференции **амплитуда результирующей волны будет уменьшаться с увеличением угла**.

Электрон (q = -e) – элементарный рассеиватель, линейные размеры которого гораздо меньше длины волны РИ: $l(< 10^{-8}\text{\AA}) << \lambda$ (~1Å). В случае монохроматических плоских волн – $E_0(t, r) = A_0(r)e^{i\omega t}$: $m\ddot{\mathbf{x}} = -k\mathbf{x} - \gamma \dot{\mathbf{x}} + q\mathbf{A}_0(\mathbf{r})e^{i\omega t}, \qquad \ddot{\mathbf{x}} + 2\delta \dot{\mathbf{x}} + \omega_0^2 \mathbf{x} = \frac{q}{m}\mathbf{A}_0(\mathbf{r})e^{i\omega t}.$ Здесь: k – коэффициент упругой связи, γ – коэфф. трения, $\delta = \frac{\gamma}{2m}$ – коэфф. затухания, $\omega_0 = \sqrt{k/m}$ – частота собственных колебаний электрона в атоме. Ищем решение в комплексной форме – $x(t, r) = x_0(r)e^{i\omega t}$: $\boldsymbol{x}_0(\boldsymbol{r}) = \frac{q}{m} \cdot \frac{1}{\omega_0^2 - \omega^2 + i2\delta\omega} \boldsymbol{A}_0(\boldsymbol{r}),$ $\underline{\ddot{x}(t,r)} = -\omega^2 x_0(r) = \frac{q}{m} \cdot \frac{-\omega^2}{\omega_0^2 - \omega^2 + i2\delta\omega} A_0(r) e^{i\omega t} = \frac{q}{m} f_\omega E_0(t,r),$

где *f*_{*w*} – дисперсионный множитель:

$$f_{\omega} = \frac{\omega^2}{\omega^2 - \omega_0^2 - i2\delta\omega}$$

Для свободного (слабо связанного: $\omega_0 \ll \omega, \delta \ll \omega$) электрона $f_\omega \cong 1$.

В соответствии с электромагнитной теорией Максвелла – любая заряженная частица, движущаяся с ускорением, становится источником электромагнитного излучения.

Напряженность электрического поля излучения ускоренно движущейся точечной заряженной частицы (электрона с q = -e) равна (CGS) (s = k/k):

На рисунке изображены **локальные оси** для p и \ddot{p} , а также E_0 и E_e !

 $E_e \perp s; E_e \in (E_0, s);$ $2\vartheta = \widehat{s_0s} -$ угол рассеяния. Для линейно поляризованной волны в проекциях на локальные оси E_0 и E_e (см. рис.):

$$E_e(t,R) = -\frac{e^2}{mc^2} f_\omega \frac{e^{-ikR}}{R} E_0(t,r) \sin\varphi,$$

$$A_e(R) = -\frac{e^2}{mc^2} f_\omega \frac{e^{-\iota\kappa R}}{R} A_0(\mathbf{r}) \sin \varphi,$$

$$A_e(R) = A_{e0} \frac{e^{-ikR}}{R} = b_s A_0(r) \frac{e^{-ikR}}{R},$$

где $b_s \equiv \frac{A_{e0}}{A_0(r)} = -\frac{e^2}{mc^2} f_\omega \sin \varphi$ – рассеивающая способность рассеивающего центра (электрона), отношение комплексных амплитуд рассеянной сферической и падающей плоской волн (длина рассеяния $b_s - [b_s] = c_M$). Классический радиус электрона (радиус Лоренца): $\frac{e^2}{mc^2} \sim 2.8 \cdot 10^{-13}$ см.

$$E_{0}(t, \mathbf{r}) = E_{0}e^{i(\omega t - \mathbf{k}_{0} \cdot \mathbf{r} + \varphi_{0})} = E_{0}e^{i\varphi_{0}}e^{-i\mathbf{k}_{0} \cdot \mathbf{r}}e^{i\omega t} = A_{0}e^{-i\mathbf{k}_{0} \cdot \mathbf{r}}e^{i\omega t} = A_{0}(\mathbf{r})e^{i\omega t}.$$

$$E_{e}(t, R) = \frac{E_{e0}}{R}e^{i(\omega t - kR + \varphi_{e0})} = \frac{E_{e0}e^{i\varphi_{e0}}}{R}e^{i(\omega t - kR)} = A_{e0}\frac{e^{-ikR}}{R}e^{i\omega t} = A_{e}(R)e^{i\omega t}.$$

Рассмотрим два случая: 1. Вектор электрического поля Е0 РИ лежит в плос-

$$\pi \qquad E_{e\parallel} \qquad S \qquad \text{KOC}$$

$$E_{0\parallel}, E_{e\parallel} \in (s_0, s) \qquad \varphi \qquad 2\vartheta \qquad s_0 \qquad 2\vartheta \qquad s_0 \qquad 2 \text{Bere}$$

 $2\vartheta = \widehat{s_0s}$ – угол рассеяния.

кости
$$(\mathbf{s}, \mathbf{s}_0) - \varphi = \pi/2 - 2\vartheta$$
 (π -поляризация):
 $I_{e\parallel} = I_{0\parallel} \left(\frac{e^2}{mc^2}\right)^2 |f_{\omega}|^2 \frac{1}{R^2} \cos^2 2\vartheta$.
Вектор электрического поля \mathbf{E}_0 РИ перпендикулярен плоскости $(\mathbf{s}, \mathbf{s}_0) - \varphi = \pi/2$ (σ -поляризация):
 $I_{e\perp} = I_{0\perp} \left(\frac{e^2}{mc^2}\right)^2 |f_{\omega}|^2 \frac{1}{R^2}$.

При естественной поляризации – $I_{0\parallel} = I_{0\perp} = I_0/2$:

$$I_e = I_{e\parallel} + I_{e\perp} = I_0 \left(\frac{e^2}{mc^2}\right)^2 |f_{\omega}|^2 \frac{1}{R^2} \cdot \frac{1 + \cos^2 2\vartheta}{2}.$$

 $P(2\vartheta) = \frac{1+\cos^2 2\vartheta}{2}$ – фактор поляризации.

индикатриса рассеяния, пространственная диаграмма зависимости интенсивности рассеянного электроном РИ от телесного угла рассеяния – $I_e(\Omega)$.

Фактор поляризации при использовании кристалла-монохроматора

*I*₀, *I*_γ и *I* – интенсивности падающей, отраженных от кристалла и образца лучей с поляризациями вдоль (∥) и перпендикулярно (⊥) плоскости падения (*s*₀, *n*_γ),
 *R*_γ и *R* – коэффициенты отражения (по энергии) от кристалла и объекта.

$$I_{\gamma\perp} = \frac{I_0}{2} R_{\gamma}, \ I_{\gamma\parallel} = \frac{I_0}{2} R_{\gamma} \cos^2 2\alpha, \quad I_{\perp} = I_{\gamma\perp} R, \ I_{\parallel} = I_{\gamma\parallel} R \cos^2 2\vartheta;$$

$$I_{\gamma\perp} = I_{\gamma\perp} + I_{\gamma\parallel} = I_0 \frac{R_{\gamma}}{2} (1 + \cos^2 2\alpha),$$

$$I_{\perp} = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

$$I = I_{\perp} + I_{\parallel} = I_0 \frac{R_{\gamma} R}{2} (1 + \cos^2 2\alpha),$$

Кристалл-монохроматор

 E_0

Схема хода рентгеновских лучей при съемке с кристалл-монохроматором; $n_{\gamma}, n, s_0, s_{\gamma}, s$ – в одной плоскости.

Фактор поляризации:

$$P(2\vartheta) = \frac{1 + \cos^2 2\alpha \cos^2 2\vartheta}{1 + \cos^2 2\alpha}.$$

Полный поток энергии, рассеянной одним электроном:

$$J = \oint_{S} I_e dS = I_0 \left(\frac{e^2}{mc^2}\right)^2 |f_{\omega}|^2 \frac{1}{R^2} \oint_{S} \frac{1 + \cos^2 2\vartheta}{2} dS = I_0 \frac{8\pi}{3} \left(\frac{e^2}{mc^2}\right)^2 |f_{\omega}|^2.$$

$$\int_{S} dS = \int_{I_0} \frac{8\pi}{3} \left(\frac{e^2}{mc^2}\right)^2 |f_{\omega}|^2 - \text{полное сечение рассеяния электроном.}$$

Численные оценки величин:

 $(m_{\rm e} \cong 9.1 \cdot 10^{-28}$ г, $e \cong 4.8 \cdot 10^{-10}$ (CGSE), $c \cong 3 \cdot 10^{10}$ см/с) Радиус атома: $r_{\rm a} \cong 1.5 \cdot 10^{-8}$ см.

Объем, приходящийся на атом в твердом теле: $V_a \cong (2r_a)^3 \cong 27 \cdot 10^{-24} \text{ см}^3$. Облучаемые поверхность: $S_{\exp} \cong 1 \text{ см}^2$, глубина: $d \cong 10 \text{ мкм} = 10^{-3} \text{ см}$, объем: $V_{\exp} \cong 10^{-3} \text{ см}^3$. Число облучаемых атомов: $n = V_{\exp} / V_a \cong 4 \cdot 10^{19}$.

Число электронов в атоме: $Z \in (1 \div 100)$. Число облучаемых электронов: $nZ \cong 4 \cdot 10^{19} Z$.

Множитель Томсона (квадрат радиуса Лоренца): $\left(\frac{e^2}{mc^2}\right)^2 \cong 8 \cdot 10^{-26}$ см².

Доля рассеянной энергии электронами (коэффициент рассеяния):

$$\underline{K_s} = \frac{J}{I_0 S_{\exp}} = \frac{8\pi}{3S_{\exp}} \left(\frac{e^2}{mc^2}\right)^2 nZ \cong \frac{8 \cdot 3.14}{3 \cdot 1} 8 \cdot 10^{-26} \cdot 4 \cdot 10^{19} Z \cong 3 \cdot 10^{-5} Z \cong (10^{-5} \div 10^{-3})!$$

Джеймс Клерк Максвелл

(13.06.1831 — 05.11.1879) Британский (шотландский) физик, математик и механик

Заложил основы современной классической электродинамики (уравнения Максвелла), предсказал электромагнитные волны, электромагнитную природу света, давление света. Один из основателей кинетической теории газов. Ввёл в физику статистические представления, показал статистическую природу второго начала термодинамики.

Хе́ндрик А́нтон Ло́ренц

(18.07.1853 — 04.02.1928) Нидерландский физик-теоретик

Создал классическую электронную теорию. Разработал теорию дисперсии света. Развил электродинамику движущихся сред. Объяснил ряд магнитооптических явлений.

Нобелевская премия по физике совместно с Питером Зееманом (1902 г.) «В знак признания исключительных услуг, которые они оказали науке своими исследованиями влияния магнетизма на явления излучения».

Сэр Джо́зеф Джон То́мсон (18.12.1856 — 30.08.1940) Английский физик

Экспериментально открыл электрон (1897 г.) и определил его заряд (1898 г.). Разработал теорию движения электрона в магнитном и электрическом полях.

Нобелевская премия по физике (1906 г.) «За исследования прохождения электричества через газы».

 $A_0(r) = A_0 e^{-ik_0 \cdot r}$ – комплексная амплитуда падающей плоской волны в т. В. $R_{\rm B} = R - r; R_{\rm B} \sim R \gg r,$ $k = k_0$, $\lambda = \lambda_0$ – упругое рассеяние, $k_0 = k_0 s_0$, $R_{\rm B} = \sqrt{R^2 - 2\mathbf{R} \cdot \mathbf{r} + r^2} \cong R - \mathbf{s} \cdot \mathbf{r}.$ **R**_B $\mathbf{k} = k\mathbf{s}$. рассеивающих центров – $[\rho(r)] = c M^{-3}$; $\hat{R} = Rs$ $\iiint_V \rho(\mathbf{r}) \mathrm{d}V_r = N_e$ – число рассеив. центров. S_0 Комплексная амплитуда рассеянной сферич. волны в т. Р: **2**ϑ Рассеивающим центром в т. В: $A_e(P) = b_s A_0(r) \frac{e^{-ikR_B}}{R_B}$, $b_s \equiv \frac{A_{e0}}{A_s(r)} = -\frac{e^2}{mc^2} f_\omega \sin \varphi$ – рассеивающая способность рассеивающего центра (электрона). Объемом dV_r : $dA(\mathbf{r}) = b_s A_0 e^{-i\mathbf{k}_0 \cdot \mathbf{r}} \frac{e^{-i\mathbf{k}R_B}}{R_B} \rho(\mathbf{r}) dV_r \cong b_s A_0 e^{i(\mathbf{k}-\mathbf{k}_0) \cdot \mathbf{r}} \frac{e^{-i\mathbf{k}R}}{R_B} \rho(\mathbf{r}) dV_r$.

Всем рассеивающим объектом:

$$A(\mathbf{P}) = \iiint_{V} \mathrm{d}A(\mathbf{r}) = b_{\mathbf{s}}A_{0} \frac{e^{-i\mathbf{k}R}}{R} \iiint_{V} \rho(\mathbf{r})e^{i(\mathbf{k}-\mathbf{k}_{0})\cdot\mathbf{r}} \mathrm{d}V_{\mathbf{r}} = A(\mathbf{k}-\mathbf{k}_{0}).$$

Поскольку $\rho(r) = 0$ при $r \notin V$ комплексную амплитуду представим в виде:

$$A(\boldsymbol{k}-\boldsymbol{k}_0) = b_{\boldsymbol{s}}A_0 \frac{e^{-i\boldsymbol{k}R}}{R} \iiint_{-\infty}^{+\infty} \rho(\boldsymbol{r})e^{2\pi i\boldsymbol{H}\cdot\boldsymbol{r}} \mathrm{d}V_r = b_{\boldsymbol{s}}A_0 \frac{e^{-i\boldsymbol{k}R}}{R} \Phi(\boldsymbol{H}) = A(\boldsymbol{H}).$$

$$\Phi(H) \equiv \mathbb{F}(\rho(r)) = \iiint_{-\infty}^{+\infty} \rho(r)e^{2\pi i H \cdot r} dV_r,$$

$$\rho(r) = \mathbb{F}^{-1}(\Phi(H)) = \iiint_{-\infty}^{+\infty} \Phi(H)e^{-2\pi i H \cdot r} dV_H.$$

$$- \Phi y \text{pbe-tranccomposition} - \Phi y \text{pbe-compassion} - \Phi y \text{pbe-comp$$

Фурье-трансформанта в тригонометрической форме ($e^{i\alpha} = \cos \alpha + i \sin \alpha$): $\Phi(H) = \iiint_{-\infty}^{+\infty} \rho(r) \cos(2\pi H \cdot r) dV_r + i \iiint_{-\infty}^{+\infty} \rho(r) \sin(2\pi H \cdot r) dV_r = \Phi_c(H) + i\Phi_s(H).$

Фурье-трансформанта – комплексная величина (модуль $|\Phi(H)|$, фаза $\alpha(H)$):

$$\Phi(\mathbf{H}) = |\Phi(\mathbf{H})|e^{i\alpha(\mathbf{H})}, \ |\Phi(\mathbf{H})| = \sqrt{\Phi_{\rm c}^2(\mathbf{H}) + \Phi_{\rm s}^2(\mathbf{H})},$$

$$\cos(\alpha(\mathbf{H})) = \Phi_{\rm c}(\mathbf{H})/|\Phi(\mathbf{H})|, \ \sin(\alpha(\mathbf{H})) = \Phi_{\rm s}(\mathbf{H})/|\Phi(\mathbf{H})|.$$

Свойства Фурье-трансформанты:

 $\Phi_{c}(-H) = \Phi_{c}(H), \Phi_{s}(-H) = -\Phi_{s}(H); \ \alpha(-H) = -\alpha(H); \ \Phi^{*}(H) = \Phi(-H).$ При $\rho(-r) = \rho(r): \ \Phi_{s}(H) = 0; \quad При \ \rho(-r) = -\rho(r): \ \Phi_{c}(H) = 0.$

Функцию плотности $\rho(\mathbf{r})$ можно восстановить, если знать Фурьетрансформанту $\Phi(\mathbf{H})$ – ее модуль $|\Phi(\mathbf{H})|$ и фазу $\alpha(\mathbf{H})$!!!

В обычном дифракционном эксперименте измеряется интенсивность картины рассеяния:

$$I(\mathbf{H}) = \frac{1}{2} |A(\mathbf{H})|^2 = I_0 \frac{|b_s|^2}{R^2} |\Phi(\mathbf{H})|^2,$$

где |Ф(*H*)|² – интерференционная функция протяженного объекта. Из такого эксперимента можно определить только модуль Фурьетрансформанты (спектральной функции) |Ф(*H*)|.

Важный итог

$$A(\mathbf{H}) = b_{\mathbf{s}} A_0 \frac{e^{-ikR}}{R} \Phi(\mathbf{H}), \qquad I(\mathbf{H}) = I_0 \frac{|b_{\mathbf{s}}|^2}{R^2} |\Phi(\mathbf{H})|^2.$$

1. Амплитуда рассеянного излучения A(H) пропорциональна:

- амплитуде A_0 первичной плоской волны,
- рассеивающей способности b_s рассеивающих центров (электронов),
- Фурье-трансформанте $\Phi(H)$ плотности рассеивающих центров $\rho(r)$.
- **2.** Фурье-трансформанта $\Phi(H)$ взаимно однозначно связана с объемной плотностью рассеивающих центров (электронов) $\rho(r)$:

$$\Phi(\mathbf{H}) = \mathbb{F}(\rho(\mathbf{r})), \qquad \rho(\mathbf{r}) = \mathbb{F}^{-1}(\Phi(\mathbf{H})).$$

3. Полезные свойства Фурье-трансформанты:

$$\Phi^*(\boldsymbol{H}) = \Phi(-\boldsymbol{H});$$

$$\mathbb{F}(k_1\rho_1 + k_2\rho_2) = k_1\mathbb{F}(\rho_1) + k_2\mathbb{F}(\rho_2);$$

для операции свертки – $\mathbb{F}(\rho_1 * \rho_2) = \mathbb{F}(\rho_1) \cdot \mathbb{F}(\rho_2), \quad \mathbb{F}(\rho_1 \cdot \rho_2) = \mathbb{F}(\rho_1) * \mathbb{F}(\rho_2).$

- **4.** Интенсивность рассеянного излучения I(H) пропорциональна:
 - интенсивности первичного пучка I_0 ,
 - квадрату модуля рассеивающей способности рассеивающих центров $|b_{s}|^{2}$,
 - интерференционной функции протяженного объекта $|\Phi(H)|^2$.

§4. Фурье-трансформанта электронной плотности атома (атомная амплитуда рассеяния)

Фурье-трансформанта электронной плотности атома *f*(*H*) – атомная амплитуда рассеяния.

Рассмотрим <u>сферически симметричный атом</u>: $\rho(r) = \rho(r)$: $+\infty 2\pi \pi$ $\underline{f(\mathbf{H})} \equiv \iiint_{-\infty} \rho(\mathbf{r}) e^{2\pi i \mathbf{H} \cdot \mathbf{r}} dV_r = \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{0} \rho(r) e^{2\pi i \mathbf{H} \cdot \mathbf{r}} \cos \alpha r^2 \sin \alpha \, d\alpha \, d\beta \, dr = \mathbf{H} \mathbf{h} \mathbf{h} \mathbf{r}$ $+\infty \pi$ $= 2\pi \int_{0}^{\pi} \int_{0}^{\pi} e^{2\pi i Hr \cos \alpha} \sin \alpha \, d\alpha \, \rho(r) r^2 dr = \frac{\alpha}{2\pi i Hr \cos \alpha} \sin \alpha \, d\alpha \, \rho(r) r^2 dr =$ $= 4\pi \int \frac{\sin(2\pi Hr)}{2\pi Hr} \rho(r)r^2 dr =$ KI2T SI H $=\int \operatorname{sinc}(2\pi Hr) u(r) dr = f\left(\frac{\sin\vartheta}{\lambda}\right),$ $k_0/2\pi = s_0/\lambda$

где $u(r) = 4\pi r^2 \rho(r)$ – радиальная плотность распределения электронов, $\int_{0}^{+\infty} u(r) dr = \int_{0}^{+\infty} 4\pi r^2 \rho(r) dr = Z; H = \frac{|\mathbf{k} - \mathbf{k}_0|}{2\pi} = \frac{|\mathbf{s} - \mathbf{s}_0|}{\lambda} = 2\frac{\sin \theta}{\lambda}.$

§4. Фурье-трансформанта электронной плотности атома (атомная амплитуда рассеяния)

<u>Расчетные данные</u> атомных амплитуд рассеяния в научной литературе приводятся в виде зависимости $f(\sin \vartheta/\lambda)$.

Из-за трудностей аналитического. представления атомная амплитуда рассеяния представляется в виде аппроксимирующей функции (аппроксиманты):

$$f\left(\frac{\sin\vartheta}{\lambda}\right) = \sum_{k=1}^{4} a_k e^{-b_k \left(\frac{\sin\vartheta}{\lambda}\right)^2} + c$$

Численные значения коэффициентов $a_k, b_k, (k = 1, 2, 3, 4)$ и *с* для различных химических элементов приведены в литературе.

$$f\left(\frac{\sin\vartheta}{\lambda}\right) \stackrel{\vartheta\to 0}{\Longrightarrow} \int_{0}^{+\infty} u(r) dr = Z,$$
$$f\left(\frac{\sin\vartheta}{\lambda}\right) \stackrel{\vartheta\to 0}{\Longrightarrow} \sum_{k=1}^{4} a_k + c = Z.$$

Z – число электронов в атоме (ионе);
Всего 8 независимых коэффициентов: {*a_k*, *b_k*}.

§5. Фурье-трансформанта дискретной совокупности (конфигурации) рассеивающих объектов

$$\rho(\mathbf{r}) = \sum_{m=1}^{M} \rho_m(\mathbf{r}_m), \mathbf{r} = \mathbf{R}_m + \mathbf{r}_m, \ \mathbf{R}_m - const_m, dV_r = dV_{r_m},$$

 $\boldsymbol{r}_m \notin V_m \to \rho_m(\boldsymbol{r}_m) = 0; \ m \neq n \to V_m \cap V_n = 0; \ \cup V_m = V.$

Фурье-трансформанта $\Phi(H)$ дискретной (не пересекающейся) совокупности (конфигурации) рассеивающих объектов равна сумме их Фурье-трансформант $\Phi_m(H)$, умноженных на фазовые множители $e^{2\pi i H \cdot R_m}$, учитывающие их различное расположение в пространстве.

§6. Фурье-трансформанта кристалла. Сумма Лауэ

Зададим положения элементарных ячеек векторами узлов пространственной решетки:

$$\boldsymbol{R}_{mnp} = m\boldsymbol{a} + n\boldsymbol{b} + p\boldsymbol{c},$$

где: *a*, *b*, *c* – векторный базис пространственной решетки;

$$m = 0, 1, 2, ..., M - 1; n = 0, 1, 2, ..., N - 1; p = 0, 1, 2, ..., P - 1;$$

MNP – число элементарных ячеек в кристалле;

v и V – объемы элементарной ячейки и кристалла: V = MNPv.

Запишем Фурье-трансформанту кристалла $\Phi_{MNP}(H)$ как Фурьетрансформанту конфигурации составляющих его элементарных ячеек:

$$\underline{\Phi_{MNP}(\boldsymbol{H})} = \sum_{m,n,p=0}^{M,N,P;-1} F(\boldsymbol{H}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{R}_{mnp}} = F(\boldsymbol{H}) \sum_{m,n,p=0}^{M,N,P;-1} e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{R}_{mnp}} = \underline{F(\boldsymbol{H})} \varphi_{MNP}(\boldsymbol{H}),$$

где F(H) – Фурье-трансформанта (совокупности рассеивающих центров – электронов атомов) элементарной ячейки – структурная амплитуда рассеяния.

Сумма фазовых множителей для совокупности узлов пространственной решетки – сумма Лауэ:

$$\varphi_{MNP}(\boldsymbol{H}) = \sum_{m,n,p=0}^{M,N,P;-1} e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{R}_{mnp}} = \sum_{m,n,p=0}^{M,N,P;-1} e^{i(\boldsymbol{k}-\boldsymbol{k}_{0}) \cdot \boldsymbol{R}_{mnp}} \Rightarrow 24$$

§6. Фурье-трансформанта кристалла. Сумма Лауэ

Введем новые переменные:

$$\psi_a \equiv \frac{(\boldsymbol{k} - \boldsymbol{k}_0) \cdot \boldsymbol{a}}{2}$$
, $\psi_b \equiv \frac{(\boldsymbol{k} - \boldsymbol{k}_0) \cdot \boldsymbol{b}}{2}$, $\psi_c \equiv \frac{(\boldsymbol{k} - \boldsymbol{k}_0) \cdot \boldsymbol{a}}{2}$

Тогда Сумму Лауэ (сумму фазовых множителей для пространственной решетки) можно переписать в виде:

$$\Rightarrow \varphi_{MNP} (\mathbf{H}) = \sum_{\substack{m,n,p=0\\m,n,p=0}}^{M,N,P;-1} e^{i(\mathbf{k}-\mathbf{k}_{0})\cdot\mathbf{R}_{mnp}} = \sum_{\substack{m,n,p=0\\m,n,p=0}}^{M,N,P;-1} e^{i(\mathbf{k}-\mathbf{k}_{0})\cdot(m\mathbf{a}+n\mathbf{b}+p\mathbf{c})} = \\ = \sum_{\substack{m=0\\m=0}}^{M-1} e^{2im\psi_{a}} \sum_{\substack{n=0\\n=0}}^{N-1} e^{2in\psi_{b}} \sum_{\substack{p=0\\p=0}}^{P-1} e^{2ip\psi_{c}}; \ q_{a} = e^{2i\psi_{a}}, q_{b} = e^{2i\psi_{b}}, q_{c} = e^{2i\psi_{c}}. \\ \text{Воспользуемся суммой } S_{N} \text{ геометрической прогрессии } \{a_{n}\} \text{ из } N \text{ элементов:} \\ S_{N} \equiv \sum_{\substack{n=0\\n=0}}^{N-1} a_{n} = a_{0} \frac{1-q^{N}}{1-q}; \ \{a_{n} = a_{0}q^{n}\}, n = 0, 1, 2, ..., N-1. \end{cases}$$

В результате сумма Лауэ (сумма фазовых множителей для пространственной решетки) запишется в виде:

$$\varphi_{MNP}(\mathbf{H}) = \frac{1 - e^{2iM\psi_a}}{1 - e^{2i\psi_a}} \cdot \frac{1 - e^{2iN\psi_b}}{1 - e^{2i\psi_b}} \cdot \frac{1 - e^{2iP\psi_c}}{1 - e^{2i\psi_c}}.$$

§7. Интерференционная функция Лауэ

Интенсивность рассеянного на кристалле РИ в точке наблюдения пропорциональна квадрату модуля Фурье-трансформанты кристалла – интерференционной функции кристалла $|\Phi_{MNP}(H)|^2$, равной произведению интерференционных функций элементарной ячейки $|F(H)|^2$ и Лауэ $|\varphi_{MNP}(H)|^2$:

$$I_{MNP}(\boldsymbol{H}) = I_0 \frac{|b_s|^2}{R^2} |\Phi_{MNP}(\boldsymbol{H})|^2 = I_0 \frac{|b_s|^2}{R^2} |F(\boldsymbol{H})|^2 |\varphi_{MNP}(\boldsymbol{H})|^2 \sim \\ \sim |\varphi_{MNP}(\boldsymbol{H})|^2 = \left| \frac{1 - e^{2iM\psi_a}}{1 - e^{2i\psi_a}} \cdot \frac{1 - e^{2iN\psi_b}}{1 - e^{2i\psi_b}} \cdot \frac{1 - e^{2iP\psi_c}}{1 - e^{2i\psi_c}} \right|^2$$

Проделаем простые преобразования для одного из сомножителей интерференционной функции Лауэ:

$$\begin{aligned} \left| \frac{1 - e^{2iM\psi_a}}{1 - e^{2i\psi_a}} \right|^2 &= \frac{1 - e^{2iM\psi_a}}{1 - e^{2i\psi_a}} \cdot \frac{1 - e^{-2iM\psi_a}}{1 - e^{-2i\psi_a}} = \frac{1 - e^{-2iM\psi_a} - e^{2iM\psi_a} + 1}{1 - e^{-2i\psi_a} - e^{2i\psi_a} + 1} = \\ &= \frac{2 - 2\cos 2M\psi_a}{2 - 2\cos 2\psi_a} = \frac{\sin^2 M\psi_a}{\sin^2 \psi_a}. \end{aligned}$$

В результате интерференционная функция Лауэ $|\varphi_{MNP}(H)|^2$ равна:

$$|\varphi_{MNP}(\boldsymbol{H})|^2 \equiv \mathcal{L}(\boldsymbol{H}) = \frac{\sin^2 M \psi_a}{\sin^2 \psi_a} \cdot \frac{\sin^2 N \psi_b}{\sin^2 \psi_b} \cdot \frac{\sin^2 P \psi_c}{\sin^2 \psi_c}.$$

§7. Интерференционная функция Лауэ 7.1. Условия Лауэ Интерпретация условий Лауэ $b_a \equiv \frac{(k - k_0) \cdot a}{1 - \pi} = \frac{\pi}{2} (s - s_0) \cdot a = \frac{\pi}{2} a(\cos \alpha_a - \cos \alpha_{0a}) = H\pi.$

$$\psi_{a} \equiv \frac{1}{2} = \frac{1}{\lambda} (\mathbf{s} - \mathbf{s}_{0}) \cdot \mathbf{a} = \frac{1}{\lambda} a(\cos \alpha_{a} - \cos \alpha_{0a}) = H\pi,$$

$$\psi_{b} \equiv \frac{(\mathbf{k} - \mathbf{k}_{0}) \cdot \mathbf{b}}{2} = \frac{\pi}{\lambda} (\mathbf{s} - \mathbf{s}_{0}) \cdot \mathbf{b} = \frac{\pi}{\lambda} b(\cos \alpha_{b} - \cos \alpha_{0b}) = K\pi, \implies$$

$$\psi_{c} \equiv \frac{(\mathbf{k} - \mathbf{k}_{0}) \cdot \mathbf{c}}{2} = \frac{\pi}{\lambda} (\mathbf{s} - \mathbf{s}_{0}) \cdot \mathbf{c} = \frac{\pi}{\lambda} c(\cos \alpha_{c} - \cos \alpha_{0c}) = L\pi.$$

$$\Rightarrow \begin{bmatrix} a(\cos \alpha_{a} - \cos \alpha_{0a}) = H\lambda, \\ b(\cos \alpha_{b} - \cos \alpha_{0b}) = K\lambda, \\ c(\cos \alpha_{c} - \cos \alpha_{0c}) = L\lambda. \end{bmatrix} (H, K, L \in 0, \pm 1, \pm 2, ...)$$

Условию дифракции рентгеновских волн с произвольной длиной волны на произвольной трехмерной периодической структуре соответствует направление рассеянной волны, совпадающее с направлением падающей волны, когда для всех трех периодических направлений в кристалле $\alpha_a = \alpha_{0a}$, $\alpha_b = \alpha_{0b}$, $\alpha_c = \alpha_{0c}$ (при нулевом порядке дифракции – H = 0, K = 0, L = 0).

Из трех углов $\alpha_a, \alpha_b, \alpha_c$ или $\alpha_{0a}, \alpha_{0b}, \alpha_{0c}$, задающих направления рассеянной *s* или падающей s_0 волн в пространстве, **только два являются независимыми** !!!

§7. Интерференционная функция Лауэ 7.1. Условия Лауэ Интерпретация условий Лауэ

Методы получения дифракционных картин

Система полученных трех уравнений для двух независимых переменных имеет решение лишь для некоторых определенных значений длины волны излучения λ или некоторых определенных значений углов α_{0a} , α_{0b} и α_{0c} , задающих ориентацию кристалла относительно падающей волны.

Для получения дифракционных картин на практике используют:

- рентгеновское излучение с широким частотным спектром (Δλ) (тормозное излучение рентгеновской трубки или синхротронное излучение) и произвольно ориентированный кристалл – метод Лауэ (1912 г.);
- рентгеновское монохроматическое излучение (характеристическое излучение рентгеновской трубки) и поликристаллический образец с сильно разориентированными кристалликами (Δα_{0a}, Δα_{0b}, Δα_{0c}) метод Дебая-Шеррера (1916 г.);

§7. Интерференционная функция Лауэ 7.1. Условия Лауэ $\Delta \alpha_{0a}, \Delta \alpha_{0b}, \Delta \alpha_{0c} \parallel \parallel$ Метод Дебая-Шеррера $a(\cos \alpha_a - \cos \alpha_{0a}) = H\lambda$, Закон (уравнение) Вульфа-Брэгга: $b(\cos \alpha_{h} - \cos \alpha_{0h}) = K\lambda, \quad \Longrightarrow$ $2d_{(hkl)}\sin\vartheta = n\lambda$ $c(\cos\alpha_c - \cos\alpha_{0c}) = L\lambda.$ 2400 2000 sphere 1600 Характеристи-**Интенсивность** 1200 ческое РИ Incident 800 beam 20 400 024 133 219 20.0 32.0 24.0 28.0 36.0 40.0 44.0 48.0 Порошковая дифрактограмма 022 222 113

Порошковая рентгенограмма – дебаеграмма

§7. Интерференционная функция Лауэ 7.1. Условия Лауэ Интерпретация условий Лауэ

$$\psi_{a} \equiv \frac{(\boldsymbol{k} - \boldsymbol{k}_{0}) \cdot \boldsymbol{a}}{2} = \frac{\pi}{\lambda} (\boldsymbol{s} - \boldsymbol{s}_{0}) \cdot \boldsymbol{a} = H\pi, \qquad \qquad \frac{\boldsymbol{s} - \boldsymbol{s}_{0}}{\lambda} \cdot \boldsymbol{a} = H \cdot \boldsymbol{a} = H,$$

$$\psi_{b} \equiv \frac{(\boldsymbol{k} - \boldsymbol{k}_{0}) \cdot \boldsymbol{b}}{2} = \frac{\pi}{\lambda} (\boldsymbol{s} - \boldsymbol{s}_{0}) \cdot \boldsymbol{b} = K\pi, \qquad \Longrightarrow \qquad \frac{\boldsymbol{s} - \boldsymbol{s}_{0}}{\lambda} \cdot \boldsymbol{b} = H \cdot \boldsymbol{b} = K,$$

$$\psi_{c} \equiv \frac{(\boldsymbol{k} - \boldsymbol{k}_{0}) \cdot \boldsymbol{c}}{2} = \frac{\pi}{\lambda} (\boldsymbol{s} - \boldsymbol{s}_{0}) \cdot \boldsymbol{c} = L\pi. \qquad \qquad \frac{\boldsymbol{s} - \boldsymbol{s}_{0}}{\lambda} \cdot \boldsymbol{c} = H \cdot \boldsymbol{c} = L.$$

Математич. утверждение – для любого вектора *r* справедливо тождество: $R \equiv (ra)a^* + (rb)b^* + (rc)c^* = r,$ так как проекции R и r равны: (Ra) = (ra), (Rb) = (rb), (Rc) = (rc). При этом, <u>если (*Ra*), (*Rb*) и (*Rc*) – целые числа, то вектор <u>*R*</u> – вектор обратной решетки</u>. Если вместо вектора R рассмотреть вектор H, то в соответствии с условиями Лауэ вектор рассеяния $H = \frac{s-s_0}{\lambda}$ равен вектору обратной решетки H(H, K, L)с координатами Н, К, L, и условия Лауэ запишутся в векторной форме: Вектор рассеяния \rightarrow $H \equiv \frac{s - s_0}{\lambda} = Ha^* + Kb^* + Lc^* \equiv H(H, K, L)$. — Вектор обратной решетки Вектор обратной решетки H(H, K, L) определяет координаты узлов в обратном пространстве, для которых наблюдается максимум интенсивности рассеянного (отраженного) излучения !!! 32

2.4. Обратная решетка и её свойства

Напоминание

Взаимосвязь вектора обратной решетки и узловой плоскости

 C_{s}

 C_1

c/l

S

 A_{s}

H(1,3,3)

(133)

X

 B_{s}

1. Вектор обратной решетки с координатами (h, k, l) $H(h, k, l) = ha^* + kb^* + lc^*$

перпендикулярен узловым плоскостям прямой решетки с индексами Миллера (*hkl*):

 $\boldsymbol{H}(h,k,l)\perp(hkl).$

2. Модуль вектора обратной решетки с координатами (h, k, l): $H(h, k, l) = ha^* + kb^* + lc^*$ равен обратной величине межплоскостного расстояния $d_{(hkl)}$ для семейства узловых

плоскостей с индексами Миллера (hkl):

$$|\boldsymbol{H}(h,k,l)| \equiv H(h,k,l) = \frac{1}{d_{(hkl)}}.$$

§7. Интерференционная функция Лауэ 7.2. Закон Вульфа-Брэгга

Пусть в соответствии с условиями Лауэ вектор рассеяния $H \equiv \frac{s-s_0}{\lambda}$ равен вектору обратной решетки H(H, K, L) с координатами H, K, L:

$$\boldsymbol{H} \equiv \frac{\boldsymbol{s} - \boldsymbol{s}_0}{\lambda} = H\boldsymbol{a}^* + K\boldsymbol{b}^* + L\boldsymbol{c}^* \equiv \boldsymbol{H}(H, K, L) = n\boldsymbol{H}(h, k, l),$$

такими, что H: K: L = h: k: l, где H = nh, K = nk, L = nl, при этом h, k, l - целые числа и n -<u>наибольший общий целочисленный множитель</u> – **порядок отражения**.

Так как *h*, *k*, *l* – <u>наименьшие целые числа</u>, то вектор обратной решетки *H*(*h*, *k*, *l*) перпендикулярен к семейству параллельных узловых плоскостей кристалла с индексами Миллера (*hkl*), которые можно рассматривать как плоскости, отражающие падающую волну *s*₀ в направлении *s*, при этом в соответствии со свойствами векторов обратной решетки и вектора рассеяния:

$$|\boldsymbol{H}(H,K,L)| = n|\boldsymbol{H}(h,k,l)| = \frac{n}{d_{(hkl)}} \quad \mathbf{H} \mid \mathbf{H} \mid \equiv \left|\frac{\boldsymbol{s}-\boldsymbol{s_0}}{\lambda}\right| = \frac{2\sin\vartheta}{\lambda} \text{ (см. рис),}$$

где d_{hkl} – межплоскостное расстояние для узловых плоскостей (hkl).

В результате получаем закон (уравнение) Вульфа-Брэгга, описывающий отражение рентгеновских лучей (*hkl*) от системы параллельных узловых плоскостей (*hkl*):

 $2d_{(hkl)}\sin\vartheta=n\lambda.$

29

§7. Интерференционная функция Лауэ 7.3. Построение Эвальда

Графическая интерпретация условий Лауэ Обратная решетка

В пространстве обратной решетки монокристалла совместим конец вектора s_0/λ с "нулевым" узлом обратной решетки О. Тогда точка Р – начало вектора s_0/λ и РО = $1/\lambda$.

Вокруг точки Р опишем сферу радиуса 1/λ – сферу Эвальда (сферу отражений). Поскольку рассеяние РИ упругое, конец вектора *s*/λ также принадлежит сфере Эвальда.

Если сфера Эвальда пересекает, кроме нулевого узла О, ещё хотя бы один узел Q_{HKL} обратной решетки (брэгговское положение), то формируется отраженный (дифракционный) пучок РИ, распространяющийся в направлении вектора *s*, проведенного из **центра сферы Эвальда** Р в узел обратной решетки Q_{HKL}. <u>Построение Эвальда для данного монохроматического РИ в данном</u> <u>направлении s₀ описывает дифракцию лишь для одного порядка отражения</u> (*n*) <u>на монокристалле</u>:

$$\boldsymbol{H}(H,K,L) = n \, \boldsymbol{H}(h,k,l) \, \Rightarrow \, 2d_{(hkl)} \sin \vartheta = n\lambda.$$

§7. Интерференционная функция Лауэ 7.3. Построение Эвальда

Графическая интерпретация условий Лауэ

Для другого порядка отражения *n* монохроматической волны тем же семейством параллельных плоскостей требуется другое направление вектора *s*₀. В соответствии с уравнением Вульфа-Брэгга (построением Эвальда) изменяются относительно образца и направления векторов *s*₀,*s*, и угол дифракции 2*9*:

 $2d_{hkl}\sin\vartheta_1 = n_1\lambda,$ $2d_{hkl}\sin\vartheta_2 = n_2\lambda.$

Пауль Петер Эвальд (23.01.1888 – 22.08.1985) Немецкий физик.

Основные исследования в области физики кристаллов и рентгеновских лучей. В 1916 г. построил динамическую теорию интерференции рентгеновских лучей.

§7. Интерференционная функция Лауэ 7.3. Построение Эвальда

Геометрия дифракции в прямом и обратном пространствах

При некоторых направлениях первичной рентгеновской волны относительно <u>кристалла</u> на сфере Эвальда может находится только нулевой узел О. При данной ориентации невозможно образование дифракционного пучка. Для его возникновения требуются изменения в геометрии эксперимента. Например, исследуемый образец можно повернуть на некоторый угол вокруг направления, перпендикулярного к **плоскости падения**, т.е. заданному вектору *S*₀ и нормали *H*(*h*, *k*, *l*) к семейству параллельных узпорух плоскостей (*hkl*).

Поворот (покачивание) кристалла на угол вблизи брэгговского положения вокруг оси $\perp s_0$, H(h, k, l) в прямом пространстве.

Поворот обратной решетки на угол вблизи брэгговского положения вокруг узла 000 в обратном пространстве.

§7. Интерференционная функция Лауэ 7.3. Построение Эвальда

Графическая интерпретация условий Лауэ

§7. Интерференционная функция Лауэ 7.3. Построение Эвальда

Поликристаллический образец

Варьируя три вращательные степени свободы кристалла и осуществляя тем самым все возможные его ориентации в пространстве, будет поворачиваться и обратная решетка кристалла около своего начала координат. Концы векторов обратной решетки

 $\boldsymbol{H}(H,K,L) = H\boldsymbol{a}^* + K\boldsymbol{b}^* + L\boldsymbol{c}^*,$

соединяющие узлы обратной решетки с началом координат, опишут при этом очень большую (~10¹¹) совокупность концентрических сфер, задаваемых последовательностью их радиусов – расстояний до каждого из узлов обратной решетки:

 $|H(H, K, L)| = |Ha^* + Kb^* + Lc^*|,$ которые меняются дискретно при изменении°° целочисленных индексов H, K, L.

Описанная совокупность концентрических сфер в обратном пространстве является **геометрическим образом Фурье-транс**форманты поликристалла с хаотически неупорядоченной ориентацией кристалликов в прямом пространстве.

§7. Интерференционная функция Лауэ

Напоминание

§7. Интерференционная функция Лауэ 7.4. Связь размера и формы узла обратной решетки с размером и формой кристалла

Интенсивность главного максимума, которая пропорциональна инт. ф-ии Лауэ, сосредоточена вокруг узла обратной решетки в области, форма и размеры которой полностью определяются формой и размерами кристалла.

<u>В построениях Эвальда</u> будем считать, что **у узлов обратной решетки есть размер и форма** (пространств. диаграмма интерференционной функции Лауэ).

Если вектор рассеяния $H(\xi, \eta, \zeta) \equiv \frac{s-s_0}{\lambda}$ с координатами (ξ, η, ζ) <u>в простран-</u> <u>стве обратной решетки</u> попадает внутрь узла обратной решетки, то будет наблюдаться рассеяние рентгеновского излучения.

Амплитуды главных максимумов: $|\varphi_{MNP}(H)|^2_{max} = (MNP)^2$. Поскольку:

$$\psi_{a} = \boldsymbol{H}(\xi,\eta,\zeta) \cdot \boldsymbol{a}\pi = (\xi \boldsymbol{a}^{*} + \eta \boldsymbol{b}^{*} + \zeta \boldsymbol{c}^{*}) \cdot \boldsymbol{a}\pi = \xi \pi,$$

$$\psi_{b} = \boldsymbol{H}(\xi,\eta,\zeta) \cdot \boldsymbol{b}\pi = (\xi \boldsymbol{a}^{*} + \eta \boldsymbol{b}^{*} + \zeta \boldsymbol{c}^{*}) \cdot \boldsymbol{b}\pi = \eta \pi,$$

$$\psi_{c} = \boldsymbol{H}(\xi,\eta,\zeta) \cdot \boldsymbol{c}\pi = (\xi \boldsymbol{a}^{*} + \eta \boldsymbol{b}^{*} + \zeta \boldsymbol{c}^{*}) \cdot \boldsymbol{c}\pi = \zeta \pi,$$

То ширины главных максимумов в пространстве обратной решетки:

$$\Delta \xi = \Delta \psi_a / \pi = 1/M$$
, $\Delta \eta = \Delta \psi_b / \pi = 1/N$, $\Delta \zeta = \Delta \psi_c / \pi = 1/P$

Ширины узлов обратной решетки вдоль осей обратной решетки (a^*, b^*, c^*) обратно пропорциональны числу элементарных ячеек кристалла (M, N, P) вдоль соответствующих осей прямой решетки – (a, b, c).

§7. Интерференционная функция Лауэ

7.4. Связь размера и формы узла обратной решетки с размером и формой кристалла

Форма и размеры всех узлов обратной решетки данного кристалла одинаковы, т. е. не зависят от положения узла в обратном пространстве. Вместе с тем, ширина дифракционных максимумов $\Delta(2\vartheta)$, наблюдаемых на дифрактограммах (рентгенограммах), растет с ростом угла 2ϑ .

 $\Delta H(\xi, 0, 0)$

О

0

0

29

0

 $\Delta(29)$

0

0

0

0

43

$$|\mathbf{H}| = \frac{2\sin\vartheta}{\lambda} = H(\xi, 0, 0) = \xi a^*, \qquad a \uparrow^{\circ} \circ^{\circ}$$
$$\Delta H = \frac{2\cos\vartheta}{\lambda} \Delta \vartheta = \Delta \xi a^* = \frac{1}{Ma} = \frac{1}{L_a}, \qquad (h00) \uparrow^{\circ} \circ^{\circ}$$
$$\Delta(2\vartheta) = \frac{\lambda}{L_a\cos\vartheta} - \Phi \text{ормула Шеррера,} \qquad \circ^{\circ} \circ^{\circ}$$

где $L_a = Ma$ - размер кристалла вдоль направления *a* (перпендикулярно плоскостям (h00)).

Определяя на дифрактограмме (рентгенограмме) уширение линий Δ(2θ) можно определять размеры кристалла по различным направлениям !!!

§7. Интерференционная функция Лауэ 7.4. Связь размера и формы узла обратной решетки с размером и формой кристалла

<u>Форма узла обратной решетки, т.е. окружающих узлы</u> <u>поверхностей, соответствующих равной интенсивности</u> <u>рассеянного РИ</u>, определяется формой кристалла:

 – если кристалл велик во всех направлениях, то узлы обратной решетки представляют собой практически геометрические точки;

- кристаллу **сферической формы** отвечают **сферические области** в пространстве обратной решетки;

- пластинчатому кристаллу соответствуют стержни, вытянутые вдоль нормали к пластинке;

– игольчатому кристаллу – области в форме пластинок, перпендикулярные игольчатому кристаллу.

Интерференционное уширение узлов обратной решетки, а значит и уширение дифракционных линий $\Delta(2\vartheta)$, растет обратно пропорционально линейным размерам кристалла $\{L_a\}$ и особенно велико (> ~1°) для значений: $\{L_a\} < \frac{\lambda}{1^\circ \cdot \cos \vartheta} \sim 10^{-6} \text{ см} = 0.01 \text{ мкм} = 10 \text{ нм} = 100 \text{ Å}.$

b a*∕

 \bigcirc

Амплитуда и интенсивность рассеянного на кристалле излучения:

$$A(\mathbf{H}) = b_{\mathbf{s}} A_0 \frac{e^{-ikR}}{R} \Phi_{MNP}(\mathbf{H}), \qquad I(\mathbf{H}) = I_0 \frac{|b_{\mathbf{s}}|^2}{R^2} |\Phi_{MNP}(\mathbf{H})|^2.$$

Фурье-трансформанта кристалла:

$$\Phi_{MNP}(\boldsymbol{H}) = F(\boldsymbol{H})\varphi_{MNP}(\boldsymbol{H});$$

F(*H*) – Фурье-трансформанта элементарной ячейки – структурная амплитуда рассеяния,

 $\varphi_{MNP}(\mathbf{H}) = \frac{1 - e^{2iM\psi_a}}{1 - e^{2i\psi_a}} \cdot \frac{1 - e^{2iN\psi_b}}{1 - e^{2i\psi_b}} \cdot \frac{1 - e^{2iP\psi_c}}{1 - e^{2i\psi_c}} - \operatorname{суммa} \operatorname{Лауэ}.$

Интерференционная функция кристалла:

$$|\Phi_{MNP}(\boldsymbol{H})|^2 = |F(\boldsymbol{H})|^2 \cdot |\varphi_{MNP}(\boldsymbol{H})|^2;$$

|F(H)|² – интерференционная функция элементарной ячейки, структурный фактор (множитель), определяет интенсивности дифракционных рефлексов;

 $|\varphi_{MNP}(H)|^2 \equiv \mathcal{L}(H) = \frac{\sin^2 M \psi_a}{\sin^2 \psi_a} \cdot \frac{\sin^2 N \psi_b}{\sin^2 \psi_b} \cdot \frac{\sin^2 P \psi_c}{\sin^2 \psi_c} -$ интерференционная функция Лауэ определяет положения дифракц. рефлексов.

Фурье-трансформанта элементарной ячейки *F*(*H*) – структурная амплитуда рассеяния:

> в интегральной форме, через распределение электронной плотности:

$$F(\boldsymbol{H}) = \iiint_{-\infty}^{+\infty} \rho(\boldsymbol{r}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}} \mathrm{d} V_{\boldsymbol{r}}.$$

в дискретной форме, через конфигурацию рассеивающих атомов:

$$F(\boldsymbol{H}) = \sum_{j=1}^{n} f_j(\boldsymbol{H}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_j},$$

где $f_j(H)$ – Фурье-трансформанта (**атомная амплитуда рассеяния**) *j*-го атома, $e^{2\pi i H \cdot r_j}$ – фазовый множитель рассеивающего *j*-го атома, r_j – радиус-векторы *j*-го атома в элементарной ячейке.

Структурная амплитуда рассеяния F(H) содержит информацию о координатах (r_j) и типе ($f_j(H)$) всех атомов, входящих в элементарную ячейку кристалла и образующих кристаллическую структуру кристалла.

Напоминание

Тип центрировки решетки Браве

Координатный базис – совокупность координат всех узлов в элементарной ячейке.

В зависимости от числа и расположения узлов различают элементарные ячейки:

- Р примитивные с координатным базисом (000) (1узел);
- A, B, C **базоцентрированные** с координатным базисом $(000 + 0^{1}/_{2}^{1}/_{2}), (000 + \frac{1}{2} 0^{1}/_{2}), (000 + \frac{1}{2} 0^{1}/_{2}$
- F гранецентрированные с координатным базисом $(000 + \frac{1}{2}\frac{1}{2}0 + \frac{1}{2}0\frac{1}{2} + 0\frac{1}{2}\frac{1}{2})$ (4узла);
- *I* объёмно-центрированные с координатным базисом (000 + ¹/₂ ¹/₂ ¹/₂) (2узла);
- R дважды объёмно-центрированные с координатным базисом $(000 + \frac{2}{3}\frac{1}{3}\frac{1}{3} + \frac{1}{3}\frac{2}{3}\frac{2}{3})$ (Зузла).

Базоцентрированная

Гранецентрированная

Объёмноцентрированная

Дважды объёмноцентрированная

Примитивная Ба

47

Напоминание

Структурную амплитуду в дискретной форме можно представить в виде:

$$F(\boldsymbol{H}) = \sum_{j=1}^{n} f_j(\boldsymbol{H}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_j} = \sum_{k=1}^{Z} e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_k} \cdot \sum_{l=1}^{m} f_l(\boldsymbol{H}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_l}$$

Здесь $r_j = r_k + r_l$ – радиус-вектор *j*-го атома в элем. ячейке, r_k – радиус-вектор *k*-го узла в координатном базисе элементарной ячейки, r_l – радиус-вектор *l*-го атома в атомном базисе относительно узла в эл. яч., Z – число узлов в эл. яч., m – число атомов в атомном базисе, $f_l(H)$ – Фурье-трансформанта (атомная амплитуда рассеяния) *l*-го атома, n = Zm – число атомов в эл. яч.; $\sum_{k=1}^{Z} e^{2\pi i H \cdot r_k}$ – вес узлов обратной решетки, учитывающий тип центрировки элем. ячейки; $\sum_{l=1}^{m} f_l(H)e^{2\pi i H \cdot r_l}$ – Фурье-трансформанта атомного базиса.

8.1. Примитивная элементарная ячейка (решетка Браве) Примитивная (P) элементарная ячейка содержит один узел (*Z* = 1) пространственной решетки с координатным базисом 000:

$$F(\boldsymbol{H}) = \sum_{k=1}^{1} e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_{k}} \cdot \sum_{l=1}^{m} f_{l}(\boldsymbol{H}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_{l}} = 1 \cdot \sum_{l=1}^{m} f_{l}(\boldsymbol{H}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_{l}}$$

В выражении для структурной амплитуды F(H) остается лишь сумма по всем атомам в атомном базисе (узле) решетки. Вес узлов обратной решетки равен 1.49

8.2. Объемно-центрированная элементарная ячейка (решетка Браве)

Объемно-центрированная (I) элементарная ячейка содержит два узла (Z = 2) пространственной решетки с координатным базисом $000 + \frac{1}{2}\frac{1}{2}\frac{1}{2}$:

$$F(H) = \sum_{k=1}^{2} e^{2\pi i H \cdot r_{k}} \cdot \sum_{l=1}^{m} f_{l}(H) e^{2\pi i H \cdot r_{l}}; (H(H, K, L) = Ha^{*} + Kb^{*} + Lc^{*}).$$

В этом случае в выражении для структурной амплитуды перед суммой по всем атомам в атомном базисе (узле) решетки появится коэффициент:

$$\sum_{k=1}^{2} e^{2\pi i H \cdot r_k} = 1 + e^{\pi i (H+K+L)} = \underline{1 + \cos[\pi (H+K+L)]}.$$

Коэффициент имеет только два значения для любых *H*, *K*, *L*:

2, для
$$H + K + L = 2n$$
,
0, для $H + K + L = 2n + 1$.

При рассеянии излучения объемно-центрированной решеткой **веса узлов** обратной решетки с четной суммой индексов равны 2, а с нечетной суммой индексов равны 0. Соответствующие отражения в дифракционных спектрах не будут наблюдаться независимо от сингонии кристалла ((o), (h), (c)), если: H + K + L = 2n + 1 - закон погасания.

8.3. Гранецентрированная элементарная ячейка (решетка Браве)

Гранецентрированная (F) элементарная ячейка содержит четыре узла (Z = 4) пространственной решетки с координатным базисом $000 + 0\frac{1}{2}\frac{1}{2} + \frac{1}{2}0\frac{1}{2} + \frac{1}{2}\frac{1}{2}0\frac{1}{2}$:

$$F(\boldsymbol{H}) = \sum_{k=1}^{4} e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_{k}} \cdot \sum_{l=1}^{m} f_{l}(\boldsymbol{H}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_{l}}$$

В этом случае появится коэффициент:

$$\sum_{k=1}^{4} e^{2\pi i H \cdot r_k} = \underline{1 + \cos[\pi(K+L)] + \cos[\pi(H+L)] + \cos[\pi(H+K)]}.$$

Коэффициент имеет только два значения для любых *H*, *K*, *L*:

4, для *H*, *K*, *L* одной четности,

0, для *H*, *K*, *L*разной четности.

При рассеянии излучения гранецентрированной решеткой **веса узлов** обратной решетки с индексами одной четности равны 4, а с индексами разной четности равны 0. Соответствующие отражения в дифракционных спектрах не будут наблюдаться независимо от сингонии кристалла ((o), (c)), если:

H, *K*, *L* разной четности – закон погасания.

8.4. Базоцентрированная элементарная ячейка (решетка Браве) Базоцентрированная (A, B, C) элементарная ячейка содержит два узла (Z = 2) пространственной решетки с координатным базисом или 000 + 01/21/2, или 000 + 1/201/2, или 000 + 1/21/20:

$$F(\boldsymbol{H}) = \sum_{k=1}^{2} e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_{k}} \cdot \sum_{l=1}^{m} f_{l}(\boldsymbol{H}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_{l}}.$$

В этом случае появится коэффициент:

2

$$\sum_{k=1}^{-} e^{2\pi i H \cdot r_k} = (1 + \cos[\pi(K+L)]) \vee (1 + \cos[\pi(H+L)]) \vee (1 + \cos[\pi(H+K)]).$$

Коэффициент имеет только два значения для любых *H*, *K*, *L*:

2 для K + L = 2n, 0 для K + L = 2n + 1; ^{ИЛИ} ² для H + L = 2n, При рассеянии излучения базоцентрированной решеткой **веса узлов обратной решетки** с четной суммой индексов равны 2, а с нечетной суммой индексов равны 0. Соответствующие отражения в дифракционных спектрах не будут наблюдаться **независимо от сингонии кристалла** ((m), (o)), если: K + L = 2n + 1 или H + L = 2n + 1 или H + K = 2n + 1 -закон погасания.

Промежуточный итог

Амплитуда A(H) и интенсивность I(H) рассеянного на кристалле излучения:

$$A(\mathbf{H}) = b_{s}A_{0}\frac{e^{-ikR}}{R}\Phi_{MNP}(\mathbf{H}), \qquad I(\mathbf{H}) = I_{0}\frac{|b_{s}|^{2}}{R^{2}}|\Phi_{MNP}(\mathbf{H})|^{2}.$$

Фурье-трансформанта кристалла:

$$\Phi_{MNP}(\boldsymbol{H}) = F(\boldsymbol{H})\varphi_{MNP}(\boldsymbol{H});$$

F(H) – Фурье-трансформанта элем. яч. (структурная амплитуда рассеяния); $\varphi_{MNP}(H)$ – сумма Лауэ.

Интерференционная функция кристалла:

$$|\Phi_{MNP}(\boldsymbol{H})|^2 = |F(\boldsymbol{H})|^2 \cdot |\varphi_{MNP}(\boldsymbol{H})|^2;$$

 $|F(H)|^2$ – интерференционная функция элем. ячейки (структурный фактор), $|\varphi_{MNP}(H)|^2 \equiv \mathcal{L}(H)$ – интерференционная функция Лауэ.

$$F(\boldsymbol{H}) = \sum_{k=1}^{Z} e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_{k}} \cdot \sum_{l=1}^{m} f_{l}(\boldsymbol{H}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_{l}}.$$

∑_{k=1}^Z e^{2πiH·r_k} – вес узлов обратной решетки, учитывающий тип центрировки элементарной ячейки,

 $\sum_{l=1}^{m} f_l(\mathbf{H}) e^{2\pi i \mathbf{H} \cdot \mathbf{r}_l}$ – Фурье-трансформанта атомного базиса,

 $f_l(H) - \Phi ypbe-трансформанта (атомная амплитуда рассеяния)$ *l*-го атома, $<math>r_k$ – радиус-вектор *k* –го узла (координатного базиса) элементарной ячейки, r_l – радиус-вектор *l* –го атома в атомном базисе относительно узла в эл. яч.

§9. Интенсивность рассеяния регулярными совокупностями атомов 9.1. Требования к объекту исследования.

<u>Напомним</u> некоторые из основных положений кинематической теории рассеяния рентгеновских лучей:

2. Рассеяние первичного РИ – однократное рассеяние: рассеянная волна выходит из кристалла (нет многократного рассеяния и поглощения; амплитуда рассеянных волн гораздо меньше амплитуды падающей волны).

3. Интенсивность падающей волны РИ при распространении в кристалле не уменьшается (пренебрегаем упругим рассеянием и неупругими процессами).

Из этих положений вытекает <u>требование к объекту исследования в рамках</u> кинематической теории дифракции – малая толщина или рассеивающего кристалла, или кристалликов в поликристалле, или блоков в мозаичном кристалле:

$$L < 10^{-4} \div 10^{-3}$$
см (1 ÷ 10 мкм).

Если не выполняется это требование, то необходимо использовать динамическую теорию рассеяния.

§9. Интенсивность рассеяния регулярными совокупностями атомов 9.1. Требования к объекту исследования.

Регулярные совокупности атомов

- 1. Кристаллический блок с правильной периодической структурой (маленький кристаллик с размером < $10^{-4} \div 10^{-3}$ см (1 ÷ 10 мкм)).
- 2. Поликристалл, состоящий из хаотически ориентированных кристаллических блоков (размер блоков < $10^{-4} \div 10^{-3}$ см ($1 \div 10$ мкм)).
- 3. Мозаичный кристалл, состоящий из кристаллических блоков, повернутых друг относительно друга на очень малые углы (средний угол мозаичности кристалла составляет доли градуса (δφ~0.2°), размер блоков в зависимости от способа получения ~10⁻⁵ ÷ 10⁻³ см (0.1 ÷ 10 мкм)).
- 4. Идеальный кристалл (с размерами $\sim 10^{-3} \div 10^2$ см ($10 \div 10^6$ мкм)).

В дифракционных экспериментах разница между кристаллическим блоком и идеальным кристаллом определяется экстинкционной длиной – <u>минимальным</u> размером блоков, при котором необходимо учитывать взаимодействие рассеянных волн с первичной волной в кристалле. Экстинкционная длина определяется степенью взаимодействия излучения с веществом.

Для рентгеновского излучения экстинкционная длина ~10⁻⁴ см (~1 мкм).

§9. Интенсивность рассеяния регулярными совокупностями атомов

9.2. Интегральная интенсивность брэгговского отражения

Причины, по которым возникают трудности при измерении интенсивности рассеянного кристаллом РИ при фиксированном угле падения:

- при небольшом отклонении угла падения от брэгговского угла <u>резко падает</u> <u>интенсивность</u>; ф-ла Шеррера – $\Delta(2\vartheta) = \frac{\lambda}{L\cos\vartheta}$: L = 1мкм $\rightarrow \Delta(2\vartheta) \cong 0.01^{\circ}$; ширина характеристич. излуч. (естеств. ширина) – $\sim 10^{-5\circ}$, доплер. ушир. – $\sim 10^{-4\circ}$.
- при неподвижном мозаичном кристалле <u>в отражающем положении будет толь-</u> ко часть кристаллич. блоков, зависящая от степени мозаичности – δφ~0.2°;
- при не строгой параллельности монохроматического первичного пучка не все компоненты этого пучка будут отражаться от неподвижного кристалла одинаково интенсивно.

Вывод – надо снимать весь пик и мерить интегральную интенсивность (поток энергии) брэгговского отражения, пропорциональную площади пика!

Интегральная интенсивность брэгговского отражения для прозрачного кристалла пропорциональна главному максимуму и ширинам <u>интерференционной</u> <u>функции Лауэ</u> $\mathcal{L}(\mathbf{H}) \equiv |\varphi_{MNP}(\mathbf{H})|^2$, а значит, отражающему объему кристалла:

$$(J_{MNP})^{\text{int}} \sim |\varphi_{MNP}(\boldsymbol{H})|_{\max}^2 \Delta \psi_a \Delta \psi_b \Delta \psi_c \sim (MNP)^2 \frac{1}{M} \cdot \frac{1}{N} \cdot \frac{1}{P} = MNP \sim V \Longrightarrow QV,$$

где *Q* – рассеивающая способность единицы объема кристалла.

9.2. Интегральная интенсивность брэгговского отражения

9.2.1. Кристаллические пластинки (схемы Брэгга и Лауэ)

При изучении дифракции рентгеновских лучей на <u>идеальных кристаллических</u> <u>пластинках</u> рассматривают две основные схемы регистрации:

- схема Брэгга регистрация результата интерференции вышедших через ту же поверхность кристаллической пластинки пучков РИ, на которую падал первичный пучок;
- **схема Лауэ** регистрация результата интерференции <u>прошедших</u> через кристаллическую пластинку пучков РИ. /

Схема Брэгга

Схема взаимного расположения поверхностей кристаллической пластинки (сплошные линии), отражающих плоскостей (штриховые линии), падающего (I), прошедшего (T) и отраженных от узловых плоскостей (R) пучков

9.2. Интегральная интенсивность брэгговского отражения

9.2.1. Кристаллические пластинки (схемы Брэгга и Лауэ)

В симметричной схеме Брэгга дифракция происходит на атомных плоскостях, параллельных поверхностям кристаллической пластинки.

В симметричной схеме Лауэ дифракция происходит на атомных плоскостях, перпендикулярных поверхностям кристаллической пластинки.

Симметричная схема Лауэ

Симметричная схема Брэгга

9.2.1. Кристаллические пластинки (схемы Брэгга и Лауэ)

Симметричная схема Брэгга

Возьмем неограниченную по площади кристаллическую пластинку в плоскости (XY), состоящую из семейства P плоскостей (hkl), параллельных внешней поверхности пластинки. Найдем сначала коэффициент отражения от одной узловой плоскости, квадрат модуля которого затем умножим на интерференционную функцию одномерной (вглубь пластинки) решетки $\frac{\sin^2 P \psi}{\sin^2 \psi}$. т. А – источник излучения, AO = r_1 , AM = r_{1M} , т. В – точка регистрации, OB = $r_2 \equiv R$, MB = r_{2M} , плоскость (AOB) \perp поверхности пластинки и || координатной плоскости (ZOY), т. M(x,y,0) – точка на границе m-ой зоны Френеля.

Найдем уравнение внешней границы *m*-ой зоны Френеля:

$$\begin{split} r_{1\mathrm{M}} &= \sqrt{x^2 + (r_1 \cos \vartheta + y)^2 + (r_1 \sin \vartheta)^2} \cong (r_1 + y \cos \vartheta) + \frac{x^2 + (y \sin \vartheta)^2}{2r_1}, (x, y) \ll r_1; \\ r_{2\mathrm{M}} &= \sqrt{x^2 + (r_2 \cos \vartheta - y)^2 + (r_2 \sin \vartheta)^2} \cong (r_2 - y \cos \vartheta) + \frac{x^2 + (y \sin \vartheta)^2}{2r_2}, (x, y) \ll r_2; \\ \text{разность хода} - \Delta &= r_{1\mathrm{M}} + r_{2\mathrm{M}} - (r_1 + r_2) \cong \frac{x^2 + (y \sin \vartheta)^2}{2} \cdot \frac{r_1 + r_2}{r_1 r_2} = m \frac{\lambda}{2}, \end{split}$$

9.2.1. Кристаллические пластинки (схемы Брэгга и Лауэ)

Симметричная схема Брэгга $\frac{x^2}{\frac{m\lambda r_1 r_2}{r_1 + r_2}} + \frac{y^2}{\frac{m\lambda r_1 r_2}{\sin^2 \vartheta(r_1 + r_2)}} = 1, \rightarrow \frac{x^2}{a_m^2} + \frac{y^2}{b_m^2} = 1 - \text{уравнение эллипса,}$ $\sum_{m=1}^{m} \sigma_i = \pi a_m b_m = \pi \frac{m\lambda}{\sin \vartheta} \cdot \frac{r_1 r_2}{r_1 + r_2} \xrightarrow{r_1 \gg r_2 \equiv R} \cong \pi \frac{m\lambda R}{\sin \vartheta}, \quad \sigma_i = \pi \frac{\lambda R}{\sin \vartheta}.$ $A_1^{s}(R)$ $A_{\Sigma}(R)$ Спираль Френеля $\frac{A_{\Sigma}(R)}{A_{\Sigma}^{s}(R)} = \frac{1}{\pi}$ Для рентгеновского излучения: $\lambda \sim 10^{-8}$ см, $R \sim 50$ см $\Rightarrow \sigma_i = \pi \frac{\lambda R}{\sin x^9} \sim 3 \cdot 10^{-6}$ см², $a \sim 5 \cdot 10^{-8}$ см – парам. элем. ячейки. Число рассеивающих элементарных ячеек в 1-ой зоне Френеля: $\sigma_1/a^2 \sim 10^9$! Амплитуда когерентно отраженной волны от одной узловой плоскости: $\underline{A(\mathbf{H})} = A_0 b_s \frac{e^{-ikR}}{R} \Phi(\mathbf{H}) = A_0 b_s \frac{e^{-ikR}}{R} \cdot \frac{A_{\Sigma}(R)}{A_1^s(R)} \sigma_1 N d \cdot F(\mathbf{H}) = \underline{A_0 \frac{N d\lambda}{\sin \vartheta}} b_s e^{-ikR} F(\mathbf{H}),$ где: $b_s = -\frac{e^2}{mc^2} f_\omega \sin \varphi$ – рассеивающая способность рассеивающего центра (эл-на), $\Phi(H) - \Phi$ урье-трансформанта одной атомной плоскости, $F(H) - \Phi$ урье-трансформанта элементарной ячейки – структурная амплитуда. N – объемная плотность элементарных ячеек, *d* – межплоскостное расстояние отраж. плоскостей, || поверхности пластинки, *Nd* – поверхностная плотность элементарных ячеек,

9.2.1. Кристаллические пластинки (схемы Брэгга и Лауэ)

Симметричная схема Брэгга

Измеряемый детектором **поток энергии** РИ $J_P(H)$, отраженного от кристаллической пластинки, <u>содержащей *P* отражающих плоскостей</u> с межплоскостным расстоянием d(L = Pd -толщина пластинки):

$$J_P(\boldsymbol{H}) = S|A(\boldsymbol{H})|^2 \frac{\sin^2 P\psi}{\sin^2 \psi}, \qquad A(\boldsymbol{H}) = A_0 \frac{Nd\lambda}{\sin\vartheta} b_s e^{-ikR} F(\boldsymbol{H}),$$

$$f(\boldsymbol{H}) = \frac{(k-k_0)\cdot n}{2} d = k \frac{(s-s_0)\cdot n}{2} d = k \frac{|s-s_0|}{2} d = \frac{2\pi}{\lambda} d \sin\vartheta, d\psi = \frac{2\pi}{\lambda} d \cos\vartheta d\vartheta,$$

S – **площадь сечения отраженного пучка** или площадь окна детектора. Интегральная интенсивность (поток энергии) брэгговского отражения РИ: $(J_P)^{\text{int}} = \int_{-\Lambda\vartheta}^{-\pi/P} J_P(\boldsymbol{H}) d\vartheta = \int_{-\Lambda\vartheta}^{\pi/P} S|A(\boldsymbol{H})|^2 \frac{\sin^2 P\psi}{\sin^2 \psi} d\vartheta = S|A(\boldsymbol{H})|^2 \frac{\lambda}{2\pi d \cos\vartheta} \int_{-\pi/P}^{\pi/P} \frac{\sin^2 P\psi}{\sin^2 \psi} d\psi =$ $= S|A(\mathbf{H})|^{2} \frac{\lambda P}{2d\cos\vartheta} = SI_{0}|b_{s}|^{2}|F(\mathbf{H})|^{2} \frac{N^{2}d\lambda^{3}P}{2\sin^{2}\vartheta\cos\vartheta} = I_{0}|b_{s}|^{2}|F(\mathbf{H})|^{2} \frac{N^{2}\lambda^{3}}{\sin2\vartheta} \cdot \frac{SL}{\sin\vartheta} = Q(\mathbf{H})V,$ где $V = \frac{SL}{\sin x^9} = S_{\Pi OB} L - объем элемента пластинки, отражающего РИ излучение.$ Рассеивающая способность единицы объема кристалла *Q*(*H*): $Q(\mathbf{H}) = I_0 |b_s|^2 |F(\mathbf{H})|^2 N^2 \lambda^3 \frac{1}{\sin 2\vartheta} = Q'(\mathbf{H}) \frac{1}{\sin 2\vartheta} = Q'(\mathbf{H}) L(\vartheta); \ (J_M)^{\text{int}} = Q'(\mathbf{H}) \underline{L(\vartheta)} V.$ $L(\vartheta) = \frac{1}{\sin 2\vartheta} - \frac{1}{\cos 2\vartheta}$ геометрический фактор Лоренца для монокристалла определяется взаимной ориентацией кристалла и детектора.

В случае поликристалла рентген. лучи, отраженные разными хаотически ориентированными кристалликами, удовлетворяя **условию Вульфа-Брэгга**: $2d \sin \vartheta = n\lambda$,

пойдут по **образующим конуса**, ось которого – направление первичного луча, а угол полураствора составляет угол дифракции – 2ϑ (угол при вершине – 4ϑ).

Картина дифракционного рассеяния состоит из совокупности коаксиальных дифракционных конусов с углами полураствора 29 (см. рис.).

Общая интенсивность (поток энергии) дифракционного конуса для семейства параллельных плоскостей (*hkl*): $(J_{HKL})^{cone} = Qwp_{hkl}Nv = Qwp_{hkl}V$.

- Q отражающая (рассеивающая) способность единицы объема кристаллика,
- *N* число освещаемых первичным рентгеновским пучком кристалликов,
- v средний объем кристаллика,
- *w* вероятность нахождения в отражающем положении семейства параллельных плоскостей (*hkl*) какого-либо кристаллика,
- *p_{hkl}* фактор повторяемости число симметрически эквивалентных семейств параллельных плоскостей (*hkl*), переводимых друг в друга операциями симметрии точечной группы кристалла.

Фактор повторяемости

p_{hkl} – фактор повторяемости (кратность рефлекса) – число симметрически эквивалентных семейств параллельных узловых (атомных) плоскостей (*hkl*), переводимых друг в друга операциями симметрии точечной группы. Эта совокупность семейств образует кристаллическую форму {*hkl*}. Фактор повторяемости зависит от индексов отражения и симметрии кристалла.

Для кубической сингонии (a = b = c; $\alpha = \beta = \gamma = \pi/2$): {100} {110} (100)(-100) (110)(-1-10)(-110)(1-10)(010)(0-10)(011)(0-1-1)(0-11)(01-1)(001)(00-1)(101)(-10-1)(-101)(10-1) $p_{100} = 6$ $p_{110} = 12$ Для тетрагональной сингонии ($a = b \neq c$; $\alpha = \beta = \gamma = \pi/2$): $\{001\}$ $\{110\}$ {101} {100} (100)(-100) (001)(00-1) (110)(-110) (110)(-1-10)(010)(0-10)(-1-10)(0-10) (-110)(1-10) $p_{001} = 2$ $p_{110} = 4$ $p_{100} = 4$ $p_{101} = 4$

.

Фактор повторяемости

Кристаллографическая система (сингония)											
Кубичес-		Гексаго-		Тетраго-		Ромбичес-		Моноклин-		Триклин-	
кая		нальная		нальная		кая		ная		ная	
И.М.	р	И.М.	р	И.М.	р	И.М.	р	И.М.	р	И.М.	р
h00	6	001	2	00 <i>l</i>	2	<i>h</i> 00	2	0 <i>k</i> 0	2	hkl	2
hhh	8	h00	6	<i>h</i> 00	4	hk0	4	h0l	2		
hh0	12	hh0	6	hh0	4	hkl	8	hkl	4		
hhk	24	h0l	12	h0l	8						
hk0	24	hhl	12	hhl	8						
hkl	48	hk0	12	hk0	8						
		hkl	24	hkl	16						

И.М.–индексы Миллера

Найдем вероятность w нахождения в отражающем положении семейства параллельных плоскостей (*hkl*) какого-либо кристаллика (при угловой аппертуре источника $\gamma \ll \pi$): Схема регистрации по Брэггу-Брентано

$$w = \frac{S_{\text{sphere}}}{S_{\text{sphere}}} = \frac{2\pi R \cos \vartheta \cdot \gamma R}{4\pi R^2} = \frac{\gamma}{2} \cos \vartheta .$$
Интегральная интенсивность
(поток энергии) для участка
дифракционного кольца длиной *l*
(\bot плоскости чертежа), опреде-
ляемой детектором D:
 $(J_{hkl})^{\text{det}} = (J_{hkl})^{\text{cone}} \frac{l}{2\pi R \sin 2\vartheta} =$

$$= Qwp_{hkl}V \frac{l}{2\pi R \sin 2\vartheta} = Q' \frac{1}{\sin 2\vartheta} \cdot \frac{\gamma}{2} \cos \vartheta p_{hkl}V \frac{l}{2\pi R \sin 2\vartheta} = \frac{Q'\gamma p_{hkl}lV}{4\pi R} L(\vartheta),$$
 $T_{\text{de}} \frac{1}{\sin 2\vartheta} - \text{геометрический фактор Лоренца для поликристалла и детектора.}$

9.3. Учет поглощения РИ в объекте. Фактор поглощения $A(\vartheta)$

Формулу для расчета интегральной интенсивности отражения:

 $(J_M)^{\rm int} = Q(\boldsymbol{H})V$

можно применять для <u>кристаллических блоков</u> (малых кристалликов) произвольной формы, <u>мозаичных кристаллов</u> и <u>поликристаллических образцов</u>.

В случае поглощения излучения в объекте (в том числе и в поликристалле), обусловленного некогерентными явлениями (комптон-и фотоэффектами), вместо объема V следует взять эффективный объем V_{eff}:

$$V_{\text{eff}} = \iiint_V e^{-\mu(s_1+s_2)} \mathrm{d}V$$
 ,

где *µ* – линейный коэффициент поглощения, *s*₁ и *s*₂ – длины путей, проходимых в объекте первичным и рассеянным лучами до и после элемента объема dV.

Симметричная схема Брэгга $s_1 + s_2 = 2z/\sin \vartheta$, $dV = S_0 dz/\sin \vartheta$: $V_{eff} = S_0 \int_{z_0}^{z_0} e^{-\frac{2\mu z}{\sin \vartheta}} \frac{dz}{\sin \vartheta} = \frac{S_0}{2\mu} (1 - e^{-\frac{2\mu z_0}{\sin \vartheta}})$. При $z_0 \xrightarrow{0} 0$: $V_{eff} \rightarrow 0$; $z_0 \rightarrow \infty$: $V_{eff} = \frac{S_0}{2\mu}$. $A(\vartheta) = \frac{V_{eff}}{S_0} = \frac{1}{2\mu} (1 - e^{-\frac{2\mu z_0}{\sin \vartheta}})$. $A(\vartheta) = \frac{V_{eff}}{S_0} = \frac{1}{2\mu} (1 - e^{-\frac{2\mu z_0}{\sin \vartheta}})$. $- фактор поглощения ([A(\vartheta)] = cm.);$ $(J_M)^{int} = Q(H)V_{eff} = Q(H)S_0A(\vartheta).$

9.3. Учет поглощения РИ в объекте. Фактор поглощения $A(\vartheta)$

9.4. Поправки на экстинкцию

Экстинкция – дополнительное (наряду с некогерентными комптон- и фотоэффектами) интерференционное ослабление интенсивности первичного и рассеянного пучков РИ за счет передачи энергии в отраженную волну.

Наибольшее ослабление за счет экстинкции наблюдается для самых интенсивных дифракционных максимумов. С формальной точки зрения <u>явление</u> экстинкции можно трактовать как увеличение коэффициента поглощения при прохождении падающих пучков РИ через область брэгговского отражения.

Вторичная экстинкция – <u>экстинкция в мозаичных кристаллах</u> – <u>экраниро</u>вание когерентного РИ для последующих мозаичных блоков предыдущими.

Ослабление интенсивности первичного пучка в мозаичных кристаллах будет тем больше, чем больше интенсивность рассеяния отражающей совокупностью параллельных плоскостей. Ослабление зависит не от размеров блоков, а от вероятности встретить блоки одинаковой ориентировки, т.е. от распределения блоков по углам разориентировки.

<u>Вторичная экстинкция</u> учитывается введением эффективного коэффициента поглощения μ_{eff} :

$$\mu_{\rm eff} = \mu + g(J_{HKL})^{\rm int},$$

где μ – коэффициент поглощения за счет некогерентных явлений,

g – постоянный для образца коэффициент вторичной экстинкции, $(J_{HKL})^{\text{int}}$ – интегральная интенсивность брэгговского отражения.

9.4. Поправки на экстинкцию

Первичная экстинкция – экстинкция в идеальных кристаллах. Если на идеальный кристалл падает пучок рентгеновских лучей под углом, лежащим внутри области брэгговского отражения, то в отражении участвуют только верхние слои кристалла, которые экранируют нижние. Чем совершеннее кристалл, тем больше эффект экстинкции.

Для маленького кристалла, обладающего совершенной структурой, влиянием первичной экстинкцией можно пренебречь. В таком случае применимы формулы кинематической теории рассеяния.

<u>Для более крупных кристаллов</u> начинают проявляться эффекты динамического рассеяния в тем большей степени, чем крупнее когерентно рассеивающие области кристалла.

Поправка на <u>первичную экстинкцию</u> E_{hkl} в рам- $\frac{\text{th}(x)/x}{1}$ ках динамической теории дифракции для кристалла, содержащего *m* отражающих слоев:

$$(J_{HKL})^{\text{int}} = QV \frac{\operatorname{th}(m|q(H)|)}{m|q(H)|} = QVE_{HKL},$$
где $q(H) = \frac{A(H)}{A_0} = \frac{Nd\lambda}{\sin\vartheta} e^{-ikR} b_S F(H) -$ коэффициент отражения от атомной плоскости.

 $d < \sim 0.1$ мкм – кинематическая теория, $d \sim 0.1 \div 1$ мкм – поправки на экстинкцию, $d > \sim 10 \div 100$ мкм – динамическая теория.

Гиперболический тангенс: th(x) = $(e^x - e^{-x})/(e^x + e^{-x})$

9.5. Влияние текстуры поликристаллического образца. Текстурный фактор *Т_{hkl}*

Текстура поликристаллического образца – наличие преимущественной ориентации кристаллитов в поликристаллическом образце.

Построение Эвальда

Текстура влияет на относительную интенсивность дифракционных максимумов.

9.6. Влияние искажений кристаллической структуры. Тепловое диффузное рассеяние

При прохождении РИ через кристалл происходит заметное общее рассеяние, вызванное неупругим рассеянием (комптоновское рассеяние, вторичное излучение при фотоэффекте) и упругим рассеянием при нарушении строгого порядка в расположении и типе рассеивающих атомов в единой кристаллической решетке.

Нарушение строгого порядка трехмерно-периодической кристаллической структуры ведет к ослаблению интерференционных максимумов и усилению излучения в других направлениях.

На рентгенограммах (дифрактограммах) такое нарушение проявляется в виде **диффузного фона** между главными отражениями.

Геометрия и интенсивность диффузного фона зависит от характера искажений. Исследуя диффузное рассеяние, можно экспериментально изучать нарушения кристаллической структуры.

Статические искажения – искажения, вызванные статическими смещениями атомов из своих структурных позиций (деформация структуры) или их неупорядоченной заменой другими атомами и вакансиями.

Динамические искажения – искажения, обусловленные тепловыми колебаниями атомов.

9.6. Влияние искажений кристаллической структуры. Тепловое диффузное рассеяние

Рассмотрим рассеяние РИ <u>реальным</u> (статически и динамически искаженным) <u>одноатомным</u> (атомные амплитуды рассеяния $-f_i(\mathbf{H}) = f(\mathbf{H})$) кристаллом:

- $R_j = r_j + u_j$ радиус-вектор *j*-го атома в решетке,
- $r_j = m_j a + n_j b + p_j c$ радиус-вектор <u>симметр. равновесного положения</u> атома,
- *u_i* <u>смещение</u> (в том числе тепловое) из равновесного положения атома.

Фурье-трансформанта реального кристалла, как совокупности *N* атомов:

$$\Phi(\boldsymbol{H}) = \sum_{j=1}^{N} f_j(\boldsymbol{H}) e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{R}_j} = f(\boldsymbol{H}) \sum_{j=1}^{N} e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{r}_j} e^{2\pi i \boldsymbol{H} \cdot \boldsymbol{u}_j}.$$

Интенсивность дифракционного спектра реального кристалла:

$$I(\mathbf{H}) = I_0 \frac{|b_s|^2}{R^2} |\Phi(\mathbf{H})|^2 = I_a(\mathbf{H}) \sum_{j=1}^N \sum_{j'=1}^N e^{2\pi i \mathbf{H} \cdot (\mathbf{r}_j - \mathbf{r}_{j'})} e^{2\pi i \mathbf{H} \cdot (\mathbf{u}_j - \mathbf{u}_{j'})},$$

где *I*_a(*H*) – интенсивность волны, рассеянной одним атомом. Поскольку:

- период колебаний электромагнитного поля РИ (~10⁻¹⁸ с) во много раз меньше периода тепловых колебаний атомов (~10⁻¹³ с) в кристалле (атомы практически неподвижны в момент взаимодействия с волной),
- время формирования дифракционного спектра (длительность цуга волн излучения >~10⁻¹⁰ с) гораздо больше периода колебаний атомов (~10⁻¹³ с),
- то необходимо усреднить интенсивность по всем конфигурациям смещений!
9.6. Влияние искажений кристаллической структуры. Тепловое диффузное рассеяние

Динамические (тепловые) искажения

Проведем усреднение интенсивности дифракционного спектра по всем возможным конфигурациям тепловых смещений атомов из положения равновесия:

$$I(H) = I_{a}(H) \sum_{j=1}^{N} \sum_{j'=1}^{N} e^{2\pi i H \cdot (r_{j} - r_{j'})} \left\langle e^{2\pi i H \cdot (u_{j} - u_{j'})} \right\rangle = I_{a}(H) \sum_{j=1}^{N} \sum_{j'=1}^{N} e^{2\pi i H \cdot (r_{j} - r_{j'})} \left\langle e^{ip_{jj'}} \right\rangle.$$
При малых смещениях из положения равновесия $\left(p_{jj'} \equiv 2\pi H (u_{jH} - u_{j'H}) \right)$:

$$\left\langle e^{ip} \right\rangle = \left\langle 1 + ip - p^2/2! - ip^3/3! + \cdots \right\rangle = 1 - \left\langle p^2 \right\rangle/2 + \cdots \cong e^{-\frac{w}{2}}$$

Следовательно (с учетом $H = |\mathbf{H}| = \frac{2 \sin \vartheta}{\lambda}$):

$$\begin{split} I(\mathbf{H}) &\cong I_{\mathbf{a}}(\mathbf{H}) \sum_{j=1}^{N} \sum_{j'=1}^{N} e^{2\pi i \mathbf{H} \cdot (r_{j} - r_{j'})} e^{-\frac{\langle p_{jj'}^{2} \rangle}{2}}, \qquad \langle p_{jj'}^{2} \rangle = \frac{16\pi^{2} \sin^{2} \vartheta}{\lambda^{2}} \langle (u_{jH} - u_{j'H})^{2} \rangle; \\ & \left\langle (u_{jH} - u_{j'H})^{2} \right\rangle = \langle u_{jH}^{2} \rangle + \left\langle u_{j'H}^{2} \right\rangle - 2 \langle u_{jH} u_{j'H} \rangle = 2 \left(\langle u_{H}^{2} \rangle - \left\langle u_{jH} u_{j'H} \right\rangle \right), \\ e^{-\frac{\langle p_{jj'}^{2} \rangle}{2}} = e^{-\frac{16\pi^{2} \sin^{2} \vartheta}{\lambda^{2}} \langle u_{H}^{2} \rangle} e^{\frac{16\pi^{2} \sin^{2} \vartheta}{\lambda^{2}} \langle u_{jH} u_{j'H} \rangle} \cong e^{-2W(\vartheta)} \left(1 + \frac{16\pi^{2} \sin^{2} \vartheta}{\lambda^{2}} \langle u_{jH} u_{j'H} \rangle \right); \\ I(\mathbf{H}) \sim e^{-2W(\vartheta)} = e^{-\frac{16\pi^{2} \sin^{2} \vartheta}{\lambda^{2}} \langle u_{H}^{2} \rangle} - \varphi \text{актор Дебая-Валлера.} \end{split}$$

9.6. Влияние искажений кристаллической структуры. Тепловое диффузное рассеяние

Динамические (тепловые) искажения

результате для интенсивности дифракционного спектра реального B (искаженного) кристалла получим:

$$\underline{I(\mathbf{H})} = I_{a}(\mathbf{H})e^{-2W(\vartheta)} \left(\sum_{j=1}^{N} \sum_{j'=1}^{N} e^{2\pi i \mathbf{H} \cdot (\mathbf{r}_{j} - \mathbf{r}_{j'})} + \frac{16\pi^{2} \sin^{2}\vartheta}{\lambda^{2}} \sum_{j=1}^{N} \sum_{j'=1}^{N} e^{2\pi i \mathbf{H} \cdot (\mathbf{r}_{j} - \mathbf{r}_{j'})} \left(u_{jH}u_{j'H} \right) \right) = I_{a}(\mathbf{H})e^{-2W(\vartheta)} \left(\mathcal{L}(\mathbf{H}) + 2W(\vartheta)N \left(1 + \frac{1}{\langle u_{H}^{2} \rangle} \cdot \frac{1}{N} \sum_{j \neq j'=1}^{N} e^{2\pi i \mathbf{H} \cdot (\mathbf{r}_{j} - \mathbf{r}_{j'})} \left(u_{jH}u_{j'H} \right) \right) \right).$$

Первый член выражения описывает интенсивность главных максимумов дифракционного спектра, ослабленную из-за тепловых колебаний пропорционально тепловому фактору Дебая-Валлера – $e^{-2W(\vartheta)} \left(2W = \frac{16\pi^2 \sin^2 \vartheta}{\lambda^2} \langle u_H^2 \rangle \right)$.

С ростом температуры средний квадрат смещения атомов $\langle u_{H}^{2}
angle$ растет, а интенсивность главных максимумов падает. Для определения $\langle u_H^2
angle$ необходимо знать колебательный спектр атомов вдоль вектора рассеяния $H = (s - s_0)/\lambda$ (в перпендикулярном рассеивающим плоскостям направлении).

Второй и третий члены описывают диффузное рассеяние, относительная интенсивность которого пропорциональна числу атомов N и возрастает с ростом угла ϑ и $\langle u_H^2 \rangle$.

9.7. Общая формула структурного анализа

Общая (основная) формула структурного анализа

Для интегральной интенсивности рефлекса *HKL* рассеянного излучения:

 $J_{HKL} = B(\vartheta_{HKL}) + KL(\vartheta_{HKL})P(\vartheta_{HKL})G(\vartheta_{HKL})A(\vartheta_{HKL})E_{HKL}T_{HKL}p_{HKL}|F_{HKL}|^2e^{-2W(\vartheta_{HKL})}.$

Для интенсивностей в точках $\{2artheta_i\}$ дифрактограммы рассеянного излучения:

$$J(2\vartheta_i) = B(\vartheta_i) +$$

 $+K\sum_{HKL}L(\vartheta_i)P(\vartheta_i)G(\vartheta_i)A(\vartheta_i)E_{HKL}T_{HKL}p_{HKL}|F_{HKL}|^2e^{-2W(\vartheta_i)}P_{HKL}(2\vartheta_i-2\vartheta_{HKL}).$

Здесь: *В*(*θ*) – интенсивность фона (некогерентного, в т.ч. диффузного рассеяния); *К* – масштабный фактор;

- *L*(*θ*) геометрический фактор Лоренца, который определяется взаимной ориентацией (поли-) кристалла и детектора;
- $P(\vartheta) \phi$ актор поляризации (в т. ч. учет кристалл-монохроматора);
- $G(\vartheta)$ геометрический фактор;
- $A(\vartheta) \phi$ актор поглощения; $E_{HKL} экстинкция;$
- $T_{HKL} = T_{hkl}$ текстурный фактор (H(H, K, L) = nH(h, k, l));
- $p_{HKL} = p_{hkl} фактор повторяемости семейства плоскостей (hkl);$

 $|F_{HKL}|^2$ – структурный фактор (интерф. функция эл. яч.) для рефлекса *HKL*;

 $e^{-2W(\vartheta)}$ – тепловой фактор Дебая-Валлера;

 $P_{HKL}(2\vartheta_i - 2\vartheta_{HKL})$ – профильная функция для рефлекса *HKL*.

9.7. Общая формула структурного анализа

 $LPG(\vartheta) - фактор$

Для монокристалла без монохроматора: $L(\vartheta)P(\vartheta) = \frac{1}{\sin 2\vartheta} \cdot \frac{1+\cos^2 2\vartheta}{2}$. Для монокристалла с монохроматором: $L(\vartheta)P(\vartheta) = \frac{1}{\sin 2\vartheta} \cdot \frac{1+\cos^2 2\alpha \cos^2 2\vartheta}{1+\cos^2 2\alpha}$. Для поликристалла без монохроматора: $L(\vartheta)P(\vartheta) = \frac{1}{\sin^2 \vartheta \cos \vartheta} \cdot \frac{1+\cos^2 2\vartheta}{2}$. Для поликристалла с монохроматором: $L(\vartheta)P(\vartheta) = \frac{1}{\sin^2 \vartheta \cos \vartheta} \cdot \frac{1+\cos^2 2\alpha \cos^2 2\vartheta}{1+\cos^2 2\alpha}$.

- *L*(*θ*) геометрический фактор Лоренца, который определяется взаимной ориентацией кристалла (поликристалла) и детектора,
- $P(\vartheta)$ фактор поляризации (в том числе учет кристалл-монохроматора),
- *G*(*θ*) геометрический фактор, учитывающий геометрические характеристики используемой экспериментальной методики (например, угол между регистрирующей пленкой и направлением регистрируемого РИ)

9.7. Общая формула структурного анализа

Чувствительность положения дифракционного рефлекса (угла дифракции 2 ϑ) к изменению δd межплоскостного расстояния d в зависимости от угла дифракции

