

Спецкурс

Физические основы рентгеновского дифракционного анализа

Русаков Вячеслав Серафимович

Москва - 2025

Материалы к Главе I. РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ И ЕГО СВОЙСТВА

- §1. История открытия рентгеновских лучей
- §2. Волновая природа рентгеновских лучей
 - 2.1. Метод Лауэ, эксперимент Фридриха и Книппинга
 - 2.2. Метод Генри и Лоуренса Брэггов
- §3. Рентгеновское излучение
 - 3.1. Рентгеновская трубка
 - 3.2. Спектр рентгеновского излучения
 - 3.3. Свойства тормозного излучения
 - 3.4. Свойства характеристического излучения
- §4. Взаимодействие рентгеновского излучения с веществом
 - 4.1. Индикатриса рассеяния, сечения и коэффициенты рассеяния
 - 4.2. Упругое когерентное рассеяние
 - 4.3. Фотоэффект. Рентгеновская флюоресценция и Оже-эффект
 - 4.4. Комптоновское рассеяние
 - 4.5. Ослабление рентгеновского излучения
 - 4.6. Дисперсия рентгеновского излучения
 - 4.7. Преломление и полное внешнее отражение рентгеновских лучей
- §5. Другие источники рентгеновского излучения

Открытие рентгеновских лучей (1895 г.)

Вильгельм Конрад Рентген (27.03.1845 – 10.01.1923) Немецкий физик-экспериментатор Первая в истории науки Нобелевская премия по физике (1901 г.)

"В знак признания исключительных услуг, которые он оказал науке открытием замечательных лучей, названных впоследствии в его честь"

На момент открытия Х-лучей (в 1895 г.) В.К. Рентген (50 лет) – ректор и профессор Вюцбургского университета, занимался исследованиями свойств катодных лучей (электрического разряда в стеклянных вакуумных трубках).

Открытие электрона – 1897 г. английский физик Джозеф Джон Томсон.

§1. История открытия рентгеновских лучей

Х-лучи В.К. Рентген обнаружил 8 ноября 1895 г., когда вечером остался один в своей лаборатории и проводил эксперименты с высоковольтной вакуумной трубкой. Рентген обернул вакуумную трубку черной бумагой, которая задерживала все видимые и ультрафиолетовые лучи. При подаче высокого напряжения он заметил, что некоторые флуоресцирующие кристаллы, лежащие на столе, а также бумажная ширма, покрытая платиносинеродистым барием BaPt(CN)₆, начинали светиться.

Рентген на несколько недель буквально замуровал себя в лаборатории – он поставил там кровать, еду приносили ему в лабораторию. Рентген работал в полном одиночестве, тщательно регистрируя и фотографируя все результаты действия нового вида излучения, названного им Х-лучами.

Только после многочисленных опытов и проверок 26 декабря 1895 г. на собрании Вюрцбургского физико-медицинского общества Рентген сделал сообщение о новом виде излучения, а также о первых результатах исследования их свойств.

Свойства Х-лучей, обнаруженные Рентгеном:

- обладают очень высокой проникающей способностью (по сравнению с видимыми, ультрафиолетовыми и катодными лучами),

- вызывают флюоресценцию различных веществ, таких, как стекло, минералы и т. д.,
- в отличие от катодных лучей не отклоняются от своего пути в магнитном поле,
- образуются в том месте трубки, на которое падают катодные лучи (антикатод, анод),
- отражение, преломление и интерференция Х-лучей не обнаружены.

22 декабря 1895 г. Рентген сделал снимок левой руки госпожи Рентген, которая в начале января 1896 г. появилась в газетах всего мира.

В январе 1896 г. вышла брошюра Рентгена пол заголовком «Новый род лучей». Физики во многих лабораториях тотчас подтвердили опыты Рентгена.

Уже в 1896 г. вышло более 50 книг и 1000 статей, посвященных открытию Рентгена. 4

§1. История открытия рентгеновских лучей

Эксперименты с катодными лучами 1895 г.

Одна из первых рентгеновских установок

Снимок руки Альберта фон Кёлликера (швейцарский анатом, зоолог и гистолог), 23 января 1896 года.

Кисть руки жены Рентгена — Анны Берты Рентген (Людвиг), 22 декабря 1895 года.

Нобелевские премии, связанные с рентгеновскими методами исследования

Год Авторы присуждения Авторы		Названия работы		
1901	В.К. Рентген	• Открытие Х-лучей	Физика	
1914	М. фон Лауэ	• Открытие дифракции рентгеновских лучей на кристаллах	Физика	
1915	У.Г. Брэгг, У.Л. Брэгг	• Исследование структуры кристаллов с помощью рентгеновских лучей	Физика	
1917	Ч.Г. Баркла	• Открытие характеристического рентгеновского излучения	Физика	
1927	А.Г. Комптон	• Открытие эффекта Комптона	Физика	
1929	Л. Де Бройль	• Открытие волновой природы материи	Физика	
1936	П. Дебай	 Изучение структуры дипольных моментов молекул и дифракции рентгеновских лучей и электронов в газах 	Физика	
1937	У.Н. Хоуорс, П. Каррера	 Исследование структуры углеводов и витамина С, каратиноидов, флавинов, витаминов А и В2 	Химия	
1946	Г. Меллер	• Открытие мутаций под действием рентгеновских лучей	Медицина	
1954	Л.К. Полинг	• Изучение природы химической связи и определение структуры сложных соединений	Химия	
1958	Ф. Сенгер	• Исследование структуры белков-инсулина	Химия	
1962	М. Перуц, Дж. Кендрю	• Исследования структуры глобулярных белков	Химия	
1962	Жд. Уотсон, М. Уилкинс, Ф. Крик	 Исследование молекулярной структуры нуклеиновых кислот и их роли в передаче генетической информации 	Медицина химия	
1963	К. Циглер, Дж. Натт	 Открытия в области химии и химической технологии высокополимерных веществ 	Химия	
1964	Д. Кроуфут- Ходжкин	• Рентгеноструктурные исследования биологических веществ управляющих процессами в живых организмах	Химия, медицина	
1979	А. Кормак, Г. Хаунсфилд	• Разработка методов медицинской осевой томографии	Медицина	
1981	Кай Сигбан	• Развитие методов электронной спектроскопии высокого разрешения	Физика	
1982	А. Клуг	 Работы по электронной микроскопии кристаллов нуклеопротеиновых комплексов 	Химия	
1985	Г. Хауптман, Дж. Карл	• Разработка прямых методов определения структуры кристаллов	Химия	
1988	Дж. Дайзенховер, Р. Юпер , Г. Мишель	 Определение трехмерной структуры фотосинтетического реакционного центра у пурпурных бактерий 	Химия	
2014	Э. Бетциг, У. Морнер, Ш. Хелль	• За создание флюоресцентной микроскопии высокого разрешения	Химия	

6

§2. Волновая природа рентгеновских лучей

1899 г. – нидерландские физики **Г. Хага и К.Х. Вин** обнаружили слабый дифракционный эффект пучка рентгеновских лучей на узкой щели и оценили длину волны ~1 Å (волновая природа).

1904 г. – английский физик **Ч.Г. Баркла** обнаружил поляризацию рентгеновских лучей (волновая природа).

1908 г. – английский физик **Уильям Генри Брэгг (1862–1942)**, отец **Уильяма Лоуренса Брэгга (1890–1971)**, наблюдал процесс возникновения потока электронов под действием рентгеновского излучения (корпускулярная природа).

1912 г. – Макс Феликс Теодор фон Лауэ (1879–1960) связал волновую теорию рентгеновских лучей и гипотезу о пространственных решетках кристаллов (середина XIX века французский физик-кристаллограф Огюст Браве) и теоретически рассчитал появление интерференц. (дифракц.) максимумов при прохождении пучка рентгеновских лучей через кристалл (волновая природа).

1912 г. – Вальтер Фридрих (1883–1968) и Пауль Книппинг (1883–1935) по предложению Макса фон Лауэ экспериментально проверили возможность использования кристалла как дифракционной решетки для рентгеновских лучей (на кристалле медного купороса – пентагидрата сульфата меди CuSO₄·5H₂O) (волновая природа).

Открытие дифракции рентгеновских лучей (1912 г.)

Вид экспериментальной установки Фридриха-Книппинга

Одна из первых Лауэграмм

Схема экспериментальной установки

Открытие дифракции рентгеновских лучей (1912 г.)

Немонохроматическое (белое) излучение и монокристаллический образец !!!

Лауэ теоретически рассчитал появление дифракционных максимумов. Был сделан вывод о волновой природе рентгеновского излучения, и о том, что первичное немонохроматическое ("белое") рентгеновское излучение, проходя через кристалл, дает дифракционные максимумы, соответствующие монохроматическим лучам с определенными длинами волн.

Открытие дифракции рентгеновских лучей в кристаллах:

- подтвердило, что рентгеновские лучи являются коротковолновым электромагнитным излучением,

- возвело гипотезу о пространственной решетке Огюста Браве в ранг достоверной экспериментально подтвержденной кристаллографической теории,

- устранило последние сомнения относительно существования атомов.

Примеры реальных Лауэграмм

Источники информации в методе Лауэ

- 1. Геометрия дифракционной картины
- 2. Интенсивности дифракционных пятен рефлексов

3. Тонкая структура дифракционных рефлексов и диффузного рассеяния Об элементарной ячейке кристалла:
параметрах *a*, *b*, *c*, α, β, γ; элементах симметрии решетки.

Об объемной плотности распределения электронов в кристалле:

$$\rho(\mathbf{r}) = \iiint_{-\infty}^{+\infty} \Phi(\mathbf{H}) e^{-2\pi i \mathbf{H} \cdot \mathbf{r}} \mathrm{d}V_{H}.$$

 О реальной структуре кристалла –
 дефектах, нарушениях дальнего порядка в расположении атомов в кристалле.

Открытие дифракции рентгеновских лучей (1912 г.)

Макс Феликс Теодор фон Лауэ (09.10.1879–24.04.1960) Немецкий физик-теоретик Нобелевская премия по физике

«За открытие дифракции рентгеновских лучей на кристаллах».

(1914 г.)

Через 2 года после открытия! На момент открытия (1912 г.) – 33 года, сотрудник лаборатории А.И.В. Зоммерфельда (1868-1951) в Институте теоретической физики Мюнхенского университета.

Июнь и июль 1912 г. – статьи Лауэ, Фридриха и Книппинга – теория Лауэ. Осень 1912 г. – доклад Лоуренса Брэгга (в 22 года) в Кембриджском философском обществе (публикация – февраль 1913 г).

В докладе изложена более простая, чем у Лауэ, теория дифракции рентгеновских лучей. Показано, что поток монохроматического рентгеновского излучения, падающий на параллельные атомные плоскости кристалла с межплоскостным расстоянием d под углом скольжения ϑ , будет испытывать сильное отражение, если разность хода отраженных от плоскостей волн равна целому числу длин волн: $2d\sin\vartheta = n\lambda$.

Февраль 1913 г. – статья Георгия (Юрия) Викторовича Вульфа "О рентгенограммах кристаллов".

Рассматривая отражение монохроматического рентгеновского излучения от узловых рядов и плоскостей кристалла, Г.В. Вульф устанавливает правила для определения интерференционных максимумов рентгенограмм. В частности, приходит к уравнению Лоуренса Брэгга.

В англоязычной литературе – "Bragg law (equation)".

В русскоязычной литературе – "закон (уравнение) Брэгга-Вульфа".

14

Уильям Генри Брэгг и Уильям Лоуренс Брэгг (02.07.1862-12.03.1942) (31.03.1890-01.07.1971) (отец и сын) Английские физики Нобелевская премия по физике 1915 г. "За заслуги в исследовании структуры кристаллов с

помощью рентгеновских лучей".

В 1912 г. Генри Брэгг (50 лет) — профессор физики в университете Лидса (изобрел рентгеновский спектрометр), Лоуренс Брэгг (22 года) — студентисследователь в Кембридже (создал теорию дифракции рентгеновских лучей).

Георгий (Юрий) Викторович Вульф (2.06.1863-25.12.1925) Русский кристаллограф, член-корреспондент РАН (1921)

В 1913 открыл закон интерференции (дифракции) рентгеновских лучей, отражённых от узловых рядов и плоскостей кристалла.

С 1907 г. – приват-доцент, с 1918 г. – профессор Московского университета.

2.2. Метод Генри и Лоуренса Брэггов Уравнение Брэгга-Вульфа

 $2d\sin\vartheta = n\lambda$

29-угол рассеяния (дифракции),

d – расстояние между атомными (узловыми) плоскостями,

Монохроматическое излучение и поликристаллический образец !!!

$$\sin\vartheta = n\frac{\lambda}{2d}$$

Для кубической системы

$$\frac{1}{d} = \frac{\sqrt{h^2 + k^2 + l^2}}{a}$$

Дифрактограмма – *I*(2*9*)

- *h*, *k*, *l* индексы Миллера семейства параллельных узловых плоскостей,
- а параметр элементарной ячейки,
- *d* межплоскостное расстояние.

2.2. Метод Генри и Лоуренса Брэггов Рентгеновская аппаратура

Empyrean (Malvern PANalytical) **Ultima IV** (Rigaku) **ДРОН-8Т** (АО «ИЦ «Буревестник»"))

Универсальные рентгеновские дифрактометры для анализа порошков, тонких пленок, наноматериалов и твердых тел

Рентгеновская аппаратура

Aeris Research (Malvern PANalytical)

MiniFlex-600 (Rigaku)

Настольные рентгеновские дифрактометры, предназначенный для проведения качественного и количественного фазового анализа поликристаллических материалов.

Рентгеновское излучение (Х-лучи) – коротковолновые электромагнитные волны в спектральной области между ультрафиолетовым излучением и гамма-излучением в пределах длин волн от ~ 10^{-2} Å до ~ 10^{3} Å, с энергией фотонов от ~10 >B до ~1 MэВ (1 эВ $\cong 1.6 \cdot 10^{-19}$ Дж).

 $(\lambda \sim 1 \text{ Å} \Rightarrow T = \lambda/c \sim 3.10^{-19} \text{ c}, v = c/\lambda \sim 3.10^{18} \text{ c}^{-1}, E_{\gamma} = hv/1.3^{-10} \text{ с}^{-1}$ кэВ)

Шкала электромагнитных волн

3.1. Рентгеновская трубка

Источником рентгеновских лучей обычно являются рентгеновские трубки, представляющие собой двухэлектродные электровакуумные приборы.

Рентгеновские лучи возникают при бомбардировке анода быстрыми электронами.

Схема рентгеновской трубки:

- 1 металлический стакан анода (заземляется);
- 2 бериллиевые вакуумно-плотные окна;
- 3 термоэмиссионный катод (вольфрамовая нить);
- 4 стеклянная колба (давление $P < 10^{-9} \text{ мбар}^*) \cong 10^{-12} \text{ атм});$
- 5 выводы катода с напряжением накала и высоким напряжением;
- 6 электростатическая система фокусировки электронов;
- 7 анод (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Rh или Ag);
- 8 патрубки для подсоединения системы водяного охлаждения.

Основные характеристики трубки:

- ускоряющее напряжение 1 500 кВ,
- электронный ток (0.01 мA 1 A),
- мощность (2 Bt 60 кВт),
- удельная мощность, рассеиваемая анодом $(10 10^4 \text{ Bt/mm}^2).$

Рентгеновские трубки различаются по:

- материалу анода,
- <u>мощности</u>,
- <u>форме и размерам области излучения</u> <u>анода (фокуса)</u>,
- способу получения пучка электронов и его фокусировки,
- степени вакуумирования,
- способу охлаждения анода.

 $^{*)}$ 1 бар = 10 5 Па \cong 0.987 атм. \cong 750 мм рт. ст. (торр).

3.1. Рентгеновская трубка

Внешний вид современных рентгеновских трубок

3.1. Рентгеновская трубка

КПД рентгеновской трубки

 $\eta \equiv E_{X-ray}/E_{electrons} \cong 1.1 \cdot 10^{-6}ZU \sim (0.1 - 3\%),$ где Z – атомный номер вещества анода, U (кВ) – ускоряющее напряжение.

Cu (медь) – анод: $U = 30 \text{ кB} \implies \eta \cong 0,1\%.$ W (вольфрам) – анод: $U = 100 \text{ кB} \implies \eta \cong 0,8\%.$

Область взаимодействия электронов с мишенью

3.2. Спектр рентгеновского излучения

Спектр рентгеновского излучения состоит из двух парциальных спектров:

- **тормозного** (непрерывного, сплошного, "белого") **спектра** излучения с широкой полосой различных длин волн,

- характеристического (линейчатого) спектра излучения, состоящего из отдельных узких линий определенных длин волн.

Спектр рентгеновской трубки с медным анодом при разных ускоряющих напряжениях

Особенности тормозного спектра определяются в основном режимом работы (ускоряющим напряжением и силой тока) и конструктивными особенностями (материалом и толщиной окна) трубки.

Длины волн линий характеристического спектра зависят только от материала анода рентгеновской трубки.

При низком напряжении существует только тормозной спектр.

При превышении порогового значения – напряжения возбуждения $U_{возб.}$, определяемого материалом анода, к тормозному спектру добавляется характеристический спектр излучения.

3.2. Спектр рентгеновского излучения

Изменения рентгеновского спектра

Интенсивности составляющих рентгеновского спектра

$$I_{\text{торм.}} \propto i \cdot Z \cdot U^2$$
, $I_{\text{хар.}} \propto i \left(U - U_{\text{возб.}} \right)^n$, $n \approx 1, 6 \div 2$

i – сила электронного тока, *Z* – атомный номер вещества анода,

U – ускоряющее напряжение, *U*_{возб.} – напряжение возбуждения.

3.3. Свойства тормозного излучения

Тормозное рентгеновское излучение – это электромагнитное излучение электрона при его торможении в электростатическом поле ядра и электронов атома.

Интенсивность излучения тем больше, чем больше напряжение U, сила тока i и атомный номер Z вещества анода ($I_{\text{торм.}} \propto i \cdot Z \cdot U^2$).

При падении электрона с энергией *eU* на анод, часть его энергии излучается в виде фотона с энергией *ħ*ω, а часть *A* передается атомам вещества анода:

 $eU = \hbar \omega + A$ (уравнение Эйнштейна).

Коротковолновая граница λ_0 тормозного спектра (при A = 0 и $eU_0 = \hbar\omega_0$) (граница Дуана-Ханта): $\lambda_0(\text{\AA}) = cT = \frac{c}{\nu_0} = \frac{2\pi c}{\omega_0} = \frac{2\pi \hbar c}{\hbar\omega_0} = \frac{2\pi \hbar c}{eU_0} \cong \frac{12.35}{U_0(\kappa B)}$. Распределение энергии по спектру имеет максимум при длине волны $\lambda_{\max} \cong (3/2)\lambda_0$.

В сторону длинных волн интенсивность асимптотически стремится к нулю (ограничено поглощением окном трубки).

Распределение интенсивности *I*(λ) тормозного излучения при различных напряжениях *U* на рентгеновской трубке

При превышении напряжением трубки *U* порогового значения (*U*_{возб.}) происходит <u>внутренняя ионизация атома</u>, и на фоне тормозного излучения возникает линейчатое **характеристическое рентгеновское излучение**, обусловленное электронными переходами во внутренних оболочках (слоях) атомов.

Ширина линии характеристического спектра рентгеновского излучения равна сумме ширин верхнего и нижнего уровней атома (~1 эВ). Полная ширина уровня определяется радиационными и безрадиационными (эффект Оже) переходами.

рентгеновского излучения

Спектр характеристического излучения представляется в виде К-, L-, М-, ... серий линий. Серии определяются переходами электронов с более удаленных от ядра электронных оболочек (слоев) на К-, L-, М-, ... оболочку (слой). Линии характеристического излучения расположены в спектре в

соответствии с законом Мозли.

Закон Мозли (1913 г.) – экспериментально установленная зависимость частоты ν (длины волны λ) спектральной линии характеристического рентгеновского излучения от атомного номера *Z* излучающего элемента (СГС):

В настоящее время в более общем виде:

$$v = RcZ_{\text{eff}}^2 \left(\frac{1}{n^2} - \frac{1}{m^2}\right).$$

Здесь:

- $R = \frac{me^4}{4\pi c\hbar^3} \cong 1.097 \cdot 10^5 \text{ см}^{-1}$ постоянная Ридберга,
- т, е масса и заряд электрона,

с-скорость света,

$$\hbar \equiv \frac{n}{2\pi}$$
 – постоянная Дирака,

n, m = 1, 2, 3, ... - главные квантовые числа (n < m, им соответствуют К-, L-, М-, ... электронные оболочки (слои)),

 $Z_{\rm eff} = Z - C_n$ – эффективный заряд ядра, C_n – постоянная экранирования ($n \uparrow \rightarrow C_n \uparrow$),

Закон Мозли для характеристических линий Κα₁, Lα₁, Mα₁.

Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит !!! (элементный анализ)

Генри Гвин Джефрис Мозли (23.09.1887–1008.1915) Английский физик

В 1913 экспериментально установил закон Мозли: $\sqrt{v} = A(Z - b).$

В 1910–1914 работал в лаборатории Э. Резерфорда в Манчестерском университете.

Погиб (в 28 лет) на фронте в начале Первой мировой войны в Турции, будучи офицером связи в звании капитана.

Каждый элемент вещества анода дает определенный, только ему присущий спектр характеристического излучения атома, независимо от его вхождения в химическое соединение (задействованы внутренние оболочки атома).

Спектр характеристического излучения, полученный на СУР-01 "Реном"

Рентгеноспектральный метод анализа атомного состава вещества основан на индивидуальности характеристического излучения атома и зависимости интенсивности этого излучения от концентрации элемента в образце (рентгеновский качественный и количественный элементный анализ). 29

Характеристический спектр обладает тонкой, мультиплетной, структурой, обусловленной зависимостью энергии электронов не только от главного квантового числа *n*, но и от орбитального *L* и полного *J* моментов, возникающей из-за корреляционного электростатического взаимодействия электронов в атоме.

D 5/2 D 3/2 $M, (3s)^2 (3p)^6 (3d)^{10}$ - P_{3/2} $P_{1/2}$ S 1/2 α_1 8 n L 02 α_2 $L, (2s)^2 (2p)^6$ S 1/2 $K_{\alpha_{1,2}}: 2P_{3/2,1/2} \to 1S_{1/2},$ K α_1 $K_{\beta_{1,2}}: 3P_{3/2,1/2} \to 1S_{1/2}.$ Bo α_2 $K, (1s)^2$

Схема возникновения тонкой структуры характеристического излучения, допускаемые правилами отбора (законами сохранения)

Мультиплет – группа рядом расположенных спектральных линий.

Терм – состояние электронной структуры, определяющее энергетический уровень атома.

Символ терма (τ , *L*, *S*, *J*): nL_J ($^{2S+1}L_J$), где τ – электронная конфигурация, *S*, *L*, *J* – квантовые числа спина, орбитального и полного моментов атома.

Вероятность перехода тем больше, чем ближе выше расположенная оболочка, и чем меньше мультипольность (угловой момент) излучения.

Для дипольных переходов:

 $\Delta L = \pm 1, \ \Delta J = 0, \pm 1;$

Длины волн К-серий элементов, используемых в качестве анодов в рентгеноструктурном анализе

Антика	атод (Анод)	Дл	Порог			
Элементы	Атомный номер, символ	Κ _{α1}	K _{α2}	Κ _{β1-2}	возбуждения <i>U</i> _{возб.} , В	
Хром	24 Cr	2,28962	2,29351	2,08480	5950	
Железо	26 Fe	1,93597	1,93991	1,75653	7150	
Кобальт	27 Co	1,78892	1,79278	1,62075	7700	
Никель	28 Ni	1,65784	1,66169	1,50010	8300	
Медь	29 Cu	1,54050	1,54433	1,39229	9000	
Молибден	42 Mo	0,70926	0,71354	0,63244	20000	
Родий	45 Rh	0,61300	0,61720	0,5456	23400	
Палладий	46 Pd	0,58050	0,58540	0,5205	24500	
Серебро	47 Ag	0,55936	0,56377	0,49722	25600	
Вольфрам	74 W	0,20899	0,21381	0,1844	69300	
Линии К-серии W (вольфрама) не используются в качестве монохроматического излучения.						

используются L-линии с $\lambda(L_{\alpha 1}) = 1.47641$ Å и $\lambda(L_{\alpha 2}) = 1.48745$ Å ($U_{B036} = 8400$ B).

4.1. Индикатриса рассеяния, сечения и коэффициенты рассеяния

Индикатриса рассеяния – пространственная диаграмма зависимости интенсивности *I*(*R*,Ω) рассеянного излучения от телесного угла Ω (направления) рассеяния на данном расстоянии *R* от рассеивателя.

 $d\Omega I_0$

 $d\Omega$

 $d\Omega I_0$

10- 20 - 2L

(Полное) сечение рассеяния (рассеивателем) σ – отношение полного потока энергии рассеянного излучения *J*к интенсивности падающего излучения:

$$\sigma \equiv \frac{J}{I_0} = \frac{\bigoplus I(R,\Omega)dS}{I_0} = \int_0^{4\pi} \frac{I(R,\Omega)R^2}{I_0} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{d\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\Omega}{\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\Omega}{\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega = \int_0^{4\pi} \frac{d\sigma(\Omega)}{\Omega} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{4\pi} \frac{d\Omega}{\Omega}}_{I(R,\Omega)} d\Omega; \qquad \stackrel{I_0}{=} \underbrace{\int_0^{$$

 I_0

 $d\Omega$

4.1. Индикатриса рассеяния, сечения и коэффициенты рассеяния

Коэффициент рассеяния (по энергии) – отношение полного потока энергии рассеянного телом излучения J к потоку энергии падающего на него излучения $J_0(S)$ с поперечным сечением площадью S:

$$\underline{k_s} \equiv \frac{J}{J_0(S)} = \frac{J}{I_0 S} = \frac{\sigma}{S}, \ [k_s] = 1.$$

В результате рассеяния плотность потока энергии распространяющегося в среде света уменьшается. Изменение плотности потока излучения при рассеянии света слоем dz пропорционально плотности падающего потока энергии (интенсивности) и толщине слоя:

 $I_0(z+dz) - I_0(z) = dI_0 = -\alpha_s I_0(z) dz, \quad I_0(z) = I_0(0)e^{-\alpha_s z}$ – закон Бугера. Здесь α_s – линейный коэффициент рассеяния ($[\alpha_s] = c M^{-1}$).

Пусть каждый из NSd_z рассеивателей (в среде с концентрацией N) в слое d_z выводит из пучка I_0 поток энергии J(z), тогда поток излучения, _____ рассеянного слоем d_z площадью S, будет равен: _____

$$S \cdot \alpha_{s} I_{0}(z) dz = J(z) \cdot NS dz = \sigma I_{0}(z) \cdot NS dz$$
,
 $\alpha_{s} = N \sigma = NS k_{s}$.

4.2. Упругое когерентное рассеяние

Томсоновское рассеяние – упругое когерентное рассеяние электромагнитного излучения <u>на заряженных частицах</u>.

Рэлеевское рассеяние – упругое когерентное рассеяние электромагнитного излучения <u>на неоднородностях с линейными размерами</u>: *l* << λ .

Рассеяние происходит упруго (и когерентно) – с сохранением длины волны:

$$\lambda = \lambda_0.$$

Рассеяние происходит в основном на электронах ($m_{\rm nucl} > m_{\rm p} >> m_{\rm e}$):

$$\sigma_{nucl} << \sigma_p << \sigma_{e}$$

Полное сечение рассеяния свободным электроном:

$$\sigma = \frac{8\pi}{3} \left(\frac{e^2}{mc^2}\right)^2$$
 (множитель Томсона).

Интенсивность рассеянного излучения не зависит от λ (!) и при естественной поляризации равна:

$$I_e = I_0 \left(\frac{e^2}{mc^2}\right)^2 \frac{1}{R^2} \cdot \frac{1 + \cos^2 2\vartheta}{2}$$

Рэлеевское излучение электроном ($l < 10^{-8}$ Å << $\lambda \sim 1$ Å) – сферич. (R >> l) волна:

$$I_e \sim \frac{1}{R^2}$$
.

Рассеянное излучение поляризовано (в плоскости (s, E_0)).

Рассеянная (сферическая)

волна

Палающая волна

4.3 Фотоэффект.

Рентгеновская флюоресценция и Оже-эффект

(Внешний) фотоэффект – испускание электронов веществом под действием света (рентгеновского излучения) – фотоэлектронная эмиссия.

Используя гипотезу световых квантов, Эйнштейн получил формулу для фотоэффекта:

$$h\nu_0 = A + W_{\max}$$

где *А* – работа выхода – энергия, необходимая для удаления электрона из атома (энергия связи электрона в атоме), $W_{\rm max}$ – максимальная кинетическая энергия фото-электронов.

Красная граница фотоэффекта: $v_0 \ge v_{K,L,M,...}$; $\lambda_0 \le \lambda_{K,L,M,...}$.

Схема взаимодействия электрона К-оболочки (слоя) с квантом рентгеновского излучения:

Фотоэффект + рентгеновская флуоресценция или Оже-эффект – один из самых вероятных процессов поглощения !

Открытие

Оже-эффекта – автоионизации возбужденного атома

Лизе Мейтнер (17.11.1878–27.10.1968) Австрийский физик

Исследования в области ядерной физики, ядерной химии и радиохимии.

Открытие автоионизации возбуждённого атома (1923 г.).

В её честь назван 109-й элемент табл. Менделеева – мейтнерий.

Пьер Викто́р Оже́ (14.05.1899–25.12.1993) Французский физик

Исследования в области атомной и ядерной физики, космических лучей. Открытия:

 автоионизации возбуждённого атома (1925 г.),

– широких атмосферных ливней
 в космических лучах (1938 г.).

4.3 Фотоэффект.

Рентгеновская флюоресценция и Оже-эффект

Тонкая (мультиплетная) структура сечения фотоэффекта обусловлена мультиплетностью энергетических уровней атома, возникающей из-за корреляционного электростатического взаимодействия электронов в атоме.

Схема возникновения тонкой структуры сечения фотоэффекта

Терм – состояние электронной структуры, определяющее энергетический уровень атома. **Терм** – энергетический уровень, определяемый при данной электронной конфигурации τ орбитальным *L*, спиновым *S* и полным *J* моментами атома (τ ; *L*, *S*, *J*).

Символ мультиплета:

 nL_J или ${}^{2S+1}L_J$.

Мультиплет – группа рядом расположенных спектральных линий (энергетических уровней атома, термов).

4.3 Фотоэффект. Рентгеновская флюоресценция и Оже-эффект

Зависимость сечения фотоэффекта σ_{Φ} от энергии кванта

Край полосы поглощения – значение энергии $\mathcal{E} \equiv E_{\gamma}$ или частоты ν (или длины волны λ) излучения, при превышении которого (или уменьшении λ) наблюдается резкое увеличение поглощения – $h\nu_{\mathrm{K,L,M,...}} = \mathcal{E}_{\mathrm{K,L,M...}}$. Вдали от края полосы поглощения (эмпирическое соотношение):

$$\sigma_{\phi} \sim \lambda^{q} Z^{p} \sim \nu^{-q} Z^{p}, \ 1 \le q \le 3.5, \ 4 \le p \le 5.$$

Наибольшая вероятность поглощения кванта с достаточной энергией у сильно связанных электронов (К-оболочка) !!!

4.3 Фотоэффект. Рентгеновская флюоресценция и Оже-эффект

Эффект Оже (автоионизация возбуждённого атома) и рентгеновская флуоресценция являются конкурирующими процессами при заполнении вакансии, образовавшейся в результате фотоэффекта во внутренней электронной оболочке.

Энергетическая схема Оже-процесса KL_IL_{II}: 1 – переход электрона из L_I-подоболочки, заполнение вакансии в К-оболочке;

E

0

2

TF

2 — выход электрона из L_{II} -подоболочки; T_E — кинетическая энергия Оже-электрона. Зависимость относительной вероятности эффекта Оже KLL от атомного номера химического элемента *Z*.

Вероятность эффекта Оже велика, а рентгеновской флуоресценции мала для легких элементов.

4.4. Комптоновское рассеяние

Явление увеличения длины рентгеновского излучения вследствие рассеяния его на почти покоящемся (*v*₀/с <<1) свободном (слабосвязанном) электроне. При взаимодействии кванта рентгеновского излучения (фотона) со слабо связанным электроном $(A_{II} << hv_0)$ происходит его отрыв от атома и образование рассеянного фотона. При этом часть энергии фотона hv_0 передается электрону: $\mathbf{L}_{\mathbf{A}} + \mathbf{A} + \mathbf{E} \quad (\mathbf{a} + \mathbf{A})$

$$hv_0 = hv + A_{\mu} + E_{\kappa} (v_0 > v).$$

 hv_0
 hv_0
 $\lambda > v_0,$
 $\lambda > \lambda_0.$
 $hv_0 = hv + A_{\mu} + E_{\kappa} (v_0 > v).$
Для свободного покоящегося электрона.
Законы сохранения энергии и импульса для
системы фотон + электрон в релятивистском описании
движения электрона:
 $hv_0 + m_e c^2 = hv + \gamma m_e c^2 (v_0/c <<1, A_{\mu} << hv_0),$
 $\frac{hv_0}{c} n_0 = \frac{hv}{c} n + \gamma m_e v$, где $\gamma = \frac{1}{\sqrt{1 - (v/c)^2}} - \Lambda$ оренц-.

$$= \frac{1}{\sqrt{1 - (v/c)^2}} -$$
Лоренц-.
фактор.

импульса для

В результате: $\lambda = \lambda_0 + \frac{h}{m_e c} (1 - \cos \alpha) = \lambda_0 + \lambda_K (1 - \cos \alpha),$ где $\lambda_K = \frac{h}{m_e c} \cong 0.024$ Å – комптоновская длина волны для электрона.

Изменение длины волны не зависит от длины рассеиваемой волны λ и от материала рассеивающего тела, но зависит от направления рассеяния !!! "

А́ртур Хо́лли Ко́мптон (10.09.1892–15.03.1962) Американский физик

Нобелевская премия по физике (1927 г.) «За открытие эффекта, названного его именем»

В 1922 году обнаружил и дал теоретическое обоснование эффекту изменения длины волны рентгеновского излучения при рассеянии его электронами вещества, чем доказал существование фотона.

4.4. Комптоновское рассеяние

<u>Сечение комптоновского рассеяния излучения</u> (и соответственно коэффициент поглощения) зависит от энергии фотона – <u>уменьшается с</u> <u>увеличением энергии</u>.

<u>Комптоновское рассеяние</u> играет основную роль в ослаблении интенсивности излучения при коротковолновом рентгеновском излучении.

<u>Фотоэлектрическое поглощение</u> (фотоэффект) наиболее существенно при длинноволновом рентгеновском излучении.

Зависимости линейных коэффициентов поглощения в AI (Z=13) и Pb (Z=82) от энергии фотонов.

4.4. Комптоновское рассеяние

Сечение неупругого (комптоновского) рассеяния практически пропорционально числу электронов в атоме. Следовательно, интенсивность неупругого рассеянного излучения растет с ростом порядкового номера Z химического элемента вещества рассеивателя (~Z).

Сечение упругого (рэлеевского) рассеяния рентгеновских лучей на атоме пропорционально квадрату атомного номера Z (~Z²) (из-за многоволновой <u>интерференции</u> когерентно рассеянных лучей амплитуда пропорциональна *Z*). $Z^{\uparrow} \Rightarrow I^{\text{Relay}}/I^{\text{Compton}\uparrow}$.

Следовательно:

Индикатрисы рассеяния (пространственные диаграммы зависимости интенсивности $I(R,\Omega)$) не упруго рассеянного излучения для разной длины волны λ первичного излучения:

a)
$$\lambda = 0,124$$
 HM, 6) $\lambda = 2,07 \cdot 10^{-2}$ HM, b) $\lambda = 6,2 \cdot 10^{-3}$ HM,
г) $\lambda = 2,48 \cdot 10^{-3}$ HM, д) $\lambda = 4,13 \cdot 10^{-4}$ HM.

Интенсивность пучка рентгеновского излучения ослабляется за счет **поглощения** и **рассеяния** на атомах (молекулах) вещества. Закон ослабления рентгеновского излучения слоем конечной <u>толщины *x*</u> (закон Бугера):

$$I(x) = I_0 \exp(-\mu x),$$

где μ (см⁻¹) – **линейный коэффициент ослабления** зависит от вещества и длины волны рентгеновского излучения.

Закон ослабления рентгеновского излучения слоем с поверхностной плотностью массы $m_S - [m_S] = \Gamma/cM^2$ ($m_S = \rho x$): $I(x) = I_0 \exp(-\mu_m m_S)$,

где $\mu_m = \mu x/m_S = \mu/\rho$ (см²/г) – массовый коэффициент ослабления зависит от вещества и длины волны рентгеновского излучения (ρ – объемная плотность).

Закон ослабления рентгеновского излучения слоем с поверхностной концентрацией атомов $n_S - [n_S] = c M^{-2} (n_S = \rho x / (A/N_A))$: $I(x) = I_0 \exp(-\mu_a n_S),$

где $\mu_{\rm a} = \mu_m m_S / n_S = (A/N_A) \mu_m = (A/N_A/\rho) \mu ({\rm cm}^2)$ – атомный коэффициент ослабления (A – молярная масса в-ва, $N_A = 6.023 \cdot 28$ моль⁻¹ – число Авогадро).

Акты поглощения и рассеяния рентгеновского излучения можно считать независимыми, поэтому **атомные коэффициенты ослабления равны суммам атомных коэффициентов поглощения** *τ* и **рассеяния** *α* :

$$\mu = \tau + \alpha, \mu_m = \tau_m + \alpha_m, \mu_a = \tau_a + \alpha_a.$$

Зависимости от энергии фотонов ε массового коэффициента ослабления μ_m рентгеновского излучения при взаимодействии с атомами меди Cu (Z = 29) и сечения σ процессов при взаимодействии с атомами свинца Pb (Z = 82) :

- Photo effect фотопоглощение (фото-эффект),
- Thomson упругое томсоновское рассеяние,

- Compton – неупругое комптоновское рассеяние.

При энергии *ε* < 0,1 МэВ (λ > 0,1 Å) ослабление рентгеновских лучей определяется, в основном, процессами **фотопоглощения** и **упругого рассеяния**.

Массовые коэффициенты

поглощения (фото-эффект) – τ_m и рассеяния (комптон-эффект) – α_m

для двух длин волн и некоторых веществ

Наименование	Атомный	$\lambda = 0$	12 Å	$\lambda = 0,71$ Å (λ Mo)	
элемента	номер	$ au_m$	α_m	$ au_m$	α_m
C Al Cu Ag Pb	6 13 29 47 82	0,15 0,18 0,45 1,53 5,17	0,14 0,14 0,18 0,35 0,67	0,63 5,35 52,0 26,8 140,0	0,18 0,20 0,3 0,5 0,8

Коэффициент рассеяния α (комптон-эффект) мал по сравнению с коэффициентом поглощения τ (фото-эффект) !!!

Атомный коэффициент поглощения (эффективное сечение фотоэффекта) τ можно рассматривать как сумму **коэффициентов поглощения** τ_q для отдельных *q*-уровней атома:

$$au = \sum_q au_q$$
 .

Эксперимент показал, что вдали от края полосы поглощения атомный коэффициент поглощения зависит от **атомного номера** *Z* и **длины волны** λ:

$$\tau \approx C_Z(\lambda)Z^p\lambda^q$$
, $1 \le q \le 3.5$, $4 \le p \le 5$,

где $C_Z(\lambda)$ скачкообразно меняется при переходе через значения длин волн λ_K , λ_{LI} , λ_{LII} , λ_{LII} , λ_{LIII} , ..., при которых возникает интенсивное характеристическое излучение

Край полосы поглощения – значение энергии $\mathcal{E} = E_{\gamma}$ или частоты ν (или длины волны λ) излучения, при превышении которого (или уменьшении λ) наблюдается резкое увеличение поглощения – $h\nu_{\mathrm{K,L,M,...}} = E_{\mathrm{K,L,M...}}$. <u>Наибольшее изменение вероятности поглощения</u> кванта рентгеновского

излучения у сильно связанных электронов К-оболочки (при $E > \sim \varepsilon_{\rm K}$, $\lambda < \sim \lambda_{\rm K}$!).

Наличие скачков на зависимостях коэффициентов поглощения $\tau(Z, \lambda)$ приводит к необходимости подбора излучения при проведении структурных исследований материалов. Во избежание сильного поглощения, уменьшающего интенсивность дифрагированного излучения, и сильной флуоресценции, которая резко понижает контрастность рентгенограммы, повышая фон, необходимо выбирать длину волны первичного излучения так, чтобы она была несколько больше края полосы поглощения К-(L-)серии того элемента в материале, для которого поглощение и флуоресценция наибольшие.

Благодаря скачкам поглощения появляется возможность использования селективно поглощающих фильтров для изменения спектрального состава излучения. Наиболее широко используется **β-фильтр**, позволяющий отделить α-линию (LK-переходы) характеристического спектра от β-линии (MK-переходы).

Край полосы поглощения атомов вещества, из которого состоит β-фильтр, должен лежать между α- и β-линиями характеристического спектра вещества анода рентгеновской трубки. Это условие выполняется, если **атомный номер вещества фильтра на единицу меньше атомного номера вещества анода рентгеновской трубки** в ряду элементов таблицы Менделеева:

Анод:	Cr	Mn	Fe	Со	Ni	Cu
Фильтр:	V	Cr	Mn	Fe	Со	Ni

Селективные фильтры

Подбирая длину волны края поглощения (материал фильтра) можно отсекать ненужную часть спектра

Тормозное и характеристическое излучение Cu-анода (*U* = 50 кВ), и зависимость коэффициента поглощения для Ni фильтра от длины волны.

При соответствующем подборе толщины фильтра β-линия может быть ослабленной <u>в несколько сотен раз сильнее</u>, чем α-линия.

4.6. Дисперсия рентгеновского излучения

Дисперсия рентгеновского излучения – это явление, обусловленное зависимостью диэлектрической проницаемости $\varepsilon(\omega)$, а значит скорости распространения излучения $v(\omega) = c/n(\omega) = c/\sqrt{\varepsilon(\omega)\mu}$, показателя преломления $n(\omega)$ и коэффициента поглощения $\alpha(\omega)$, от частоты ω .

Классич. электронная теория дисперсии Хе́ндрика А́нтона Ло́ренца:

$$\frac{\hat{\varepsilon}-1}{\hat{\varepsilon}+2} = \frac{\hat{n}^2-1}{\hat{n}^2+2} = \frac{\omega_{\pi}^2}{3} \cdot \frac{1}{\omega_0^2-\omega^2+i2\delta\omega},$$

 $\hat{\epsilon} = \epsilon - i\epsilon'$ – комплексная диэлектрическая проницаемость среды, $\hat{n} = \sqrt{\hat{\epsilon}} = n - in'$ – комплексный показатель преломления, ω_0 – частота собственных колебаний рассеивающего рентгеновское излучение электрона в атоме без затухания, δ – коэффициент затухания,

 $\omega_{\rm II} = \sqrt{\frac{Ne^2}{m\epsilon_0}}$ – плазменная частота (*N* – концентрация электронов).

Для конденсированных сред:

$$\begin{split} \omega_{\pi} &\cong 5.6 \cdot 10^{15} \, \text{c}^{-1} << \omega_{\text{X-ray}} \sim 10^{18} - 10^{19} \, \text{c}^{-1} \\ \lambda_{\pi} &= 2\pi c \, / \, \omega_{\pi} \cong 0.34 \text{ MKM} >> \lambda_{\text{X-ray}} \sim 1 \overset{\text{o}}{\text{A}} \\ \widehat{n}_{\text{X-ray}} \sim 1 \overset{\text{o}}{\text{H}} \end{split}$$

Хе́ндрик А́нтон Ло́ренц (18.0.1853-04.02.1928) Нидерландский физик-теоретик

Классическая электронная теория дисперсии (1892 г.)

Нобелевская премия по физике совместно с Питером Зееманом (1902) «В знак признания исключительных услуг, которые они оказали науке своими исследованиями влияния магнетизма на явления излучения»

4.6. Дисперсия рентгеновского излучения

Для рентгеновского излучения ($\omega_{n} << \omega_{X-ray}, \omega_{X-ray} > \omega_{0} \Rightarrow n(\omega) \sim 1$):

$$n(\omega) = 1 + \frac{\omega_{\pi}^2}{2} \cdot \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + 4\delta^2 \omega^2}$$
 – показатель преломления,

 $\alpha(\omega) = 2\frac{\omega}{c}n' = \frac{\omega_{\pi}^2}{c} \cdot \frac{2\delta\omega^2}{(\omega_0^2 - \omega^2)^2 + 4\delta^2\omega^2} - коэффициент поглощения.$

$$n_{\mathrm{X-ray}} < 1 \parallel \parallel, \alpha_{\mathrm{X-ray}} \sim 0 \parallel \parallel \rightarrow \frac{\lambda}{\lambda_0} = \frac{v}{c} = \frac{1}{n} > 1.$$

Вдали от полос поглощения сре́ды почти не обладают дисперсией и слабо поглощают рентгеновское излучение.

В рентгеновской области частот среда оптически менее плотная, чем вакуум. Фазовая скорость распространения рентгеновского излучения в среде больше скорости света, но групповая скорость распространения, определяющая скорость переноса энергии рентгеновского излучения, меньше скорости света.

Теория Лорентца находится в хорошем соответствии с экспериментальными результатами вдали от К-края поглощения со стороны коротких волн, хуже согласуется со стороны длинных волн и совершенно неудовлетворительна вблизи краев поглощения.

4.7. Преломление и полное внешнее отражение рентгеновских лучей

Для обнаружения отклонения рентгеновских лучей при прохождении через поверхность раздела двух сред необходимо выбирать возможно меньшие углы скольжения ϑ_0 , близкие к предельному **углу полного** внешнего отражения $\vartheta_{0,\min}$.

Впервые явление преломления и отражения рентгеновских лучей было продемонстрировано в 1933 году советскими учеными Львом Андреевичем Арцимовичем (участник атомного проекта в СССР, руководитель работ по высокотемпературной плазме и управляемого термоядерного синтеза) и Абрамом Исааковичем Алихановым (один из основоположников ядерной физики в СССР и создателей первой советской атомной бомбы).

4.7. Преломление и полное внешнее отражение рентгеновских лучей

В соответствии с законом преломления (законом Снеллиуса (1621 г.))

$$\frac{\cos\vartheta_0}{\cos\vartheta} = n < 1; \ \vartheta_0 > \vartheta.$$

При уменьшении угла скольжения ϑ_0 излучение будет проходить внутры **среды** лишь до некоторого наименьшего угла $\vartheta_{0,\min}$: 0 Вакуум

$$\cos \vartheta_{0,\min} = n, \ \vartheta_{0,\min} = \varDelta \vartheta_{\max} \cong \sqrt{2(1-n)} \sim 0.11^{\circ} \cong 7'. \qquad \xrightarrow{\vartheta_{0,\min} \qquad y \neq y} Cpega \qquad \vartheta=0$$

При дальнейшем уменьшении угла ϑ_0 наступает явление полного внешнего отражения рентгеновских лучей: часть падающего луча по-прежнему зеркально отражается от поверхности раздела вакуум – среда, а оставшаяся его часть распространяется вдоль поверхности раздела, проникая внутрь среды на глубину *Дz*. При этом **глубина проникновения** в среду *Дz* равна:

$$\Delta z = \frac{n\lambda}{2\pi\sqrt{\cos^2 \theta_0 - n^2}} \xrightarrow{\theta_0 \to 0, n \sim 1} \frac{n\lambda}{2\pi\sqrt{2(1-n)}} \cong 80 \text{ Å}.$$

Достаточно резкая граница полного внешнего отражения получается лишь для слабо поглощающих (прозрачных) сред.

С возрастанием поглощения понятие предельного угла теряет смысл: интенсивность отраженного луча плавно уменьшается с увеличением угла скольжения \mathcal{G}_0 .

Изотопные источники:

Спонтанное радиоактивное превращение электронным <u>К-захватом</u>:

⁵⁵Fe + e⁻ \rightarrow ⁵⁵Mn + ν_e ($\tau_{1/2}$ = 2.6 года). Практически чистая <u>К-серия линий</u>

($\epsilon_{k_{\alpha}} = 5.9$ кэВ без тормозного излучения).

Таких изотопов сравнительно немного, например:

²⁶Al (²⁶Mg; К-) и ⁵⁹Ni (⁵⁹Co; К-).

Низкая интенсивность излучения.

Полная автономность, надёжность, малые размеры и вес.

Синхротронные источники:

Синхротронное излучение – излучение ультрарелятивистских электронов, движущихся с ускорением.

Интенсивность излучения: в $10^4 - 10^{15}$ раз выше, чем у рентгеновской трубки (!).

<u>Широкий линейчатый очень плотный</u> (квазинепрерывный) спектр.

Излучение вдоль скорости электронов, поляризовано линейно в пл-сти орбиты.

Синхротрон электронный – резонансный циклический ускоритель электронов, в котором орбита пучка остаётся постоянного радиуса, а магнитное поле поворотных магнитов, определяющее этот радиус, возрастает во времени.

СИНХРОТРОНЫ, ИСПОЛЬЗУЕМЫЕ В РЕНТГЕНОВСКИХ ИССЛЕДОВАНИЯХ

Тип прибора	Энергия ГэВ (10 ⁹ эВ)	Радиус орбиты	Максимальный ток, мА	Длина волны в максимуме спектрального распределения, нм	Расстояние до экспериментальн ой установки, м
DESY (Гамбург, ФРГ)	7,5	31,7	45	0,017	40
ESRF, (Гренобль, Франция)	6,0	134		0,015	200
NINA (Доресбург, ФРГ)	5	20	25	0,038	47
SPREAK (Стенфорд, США)	2,7	12,7	200	0,15	14
КИСИ, (Москва, Курчатовский научный ценр)	2,5	19,7	100-300	0,01-200	10
О.С.І. (Орсей, Франция)	1,8	4	500	0,16	14-24
DORIS (Гамбург, ФРГ)	1,7-3,5	12,4	20-600	0,068-0,055	40

ЦКП "СКИФ" – Центр коллективного пользования "Сибирский кольцевой источник фотонов" – Новосибирский синхротрон поколения 4+ на 3 ГэВ, радиусом 76 м. Число экспериментальных станций – 30. Строится под Новосибирском со сроком запуска – конец 2025 г.

Курчатовский источник синхротронного излучения ("КИСИ-Курчатов") Курчатовский научный центр, Москва (1999 г.)

"КИСИ-Курчатов":

линейный ускоритель + бустерный синхротрон "Сибирь-1" + синхротрон "Сибирь-2"

"КИСИ-Курчатов":

линейный ускоритель + бустерный синхротрон "Сибирь-1" + синхротрон "Сибирь-2"

Экспериментальные станции на "КИСИ-Курчатов" (синхротрон "Сибирь 2"; 14 станций)

- Рентг. кино получение рентгеновских изображений;
- **Ленгмюр** исследование плёнок на поверхности жидкости методами стоячих рентгеновских волн;
- СТМ структурное материаловедение;

ΦΑ3Α

РКФМ

LIGA

ΠΡΟ

- РСА рентгеноструктурный анализ порошков;
- **РТ-МТ** рентгеновская топография и микротомография;
 - фазочувствительные методы исследования вещества;
- Гамма исследования фотоядерных реакций;
- Медиана медицинская и материаловедческая диагностика;
- Белок белковая кристаллография;
 - рентгеновская кристаллография и физическое материаловедение;
- РЕФРА рентгеновская рефракционная оптика;
- **EXAFS-D** рентгеновская спектроскопия поглощения в пространственнодисперсионной моде;
 - глубокая рентгеновская литография;
 - прецизионная рентгеновская оптика (в т.ч. плосковолновая рентгеновская дифракция).

The European Synchrotron Radiation Faciliti (ESRF) in Grenoble, France E = 6 ГэВ; длина кольца 844 м (R = 134 м); 28 исследовательских линий

ESRF in Grenoble, France

Фрагмент ускорительного кольца

Зал управления ускорителем

ESRF in Grenoble, France

Одна из рентгенооптических лабораторий (станций).

Восемь часов измерений обходятся каждой группе учёных ~4000 евро, а для проведения научных исследований нужно работать иногда не одну неделю чистого времени.

Европейский рентгеновский лазер на свободных электронах (2019 г.)

(European X-ray Free Electron Laser – European XFEL,

в центре синхротронного излучения DEZY, Гамбург, Германия)

Международный проект, 12 стран, 1.22 млрд евро. 58 % – Германия, 27 % – Россия

Фрагмент линейного ускорительного комплекса ($\mathcal{E}_{\max}=17,5\ \Gamma$ эВ, $L=2.1\ \kappa$ м)

Длина всего лазера *L* = 3.4 км на глубине *h* = 6-38 м.

Электроны, ускоренные сверхпроводящим линейным ускорителем до релятивистских скоростей, попадают в магнитные поля ондулятора, где они двигаются по синусоидальным траекториям, излучая короткие и мощные рентг. импульсы ($\nu \le 3.10^4$ Гц и $\tau < 100$ фс (1 фемто = 1 ф = 10^{-15}), 0,5 Å $\le \lambda \le 60$ Å) со свойствами лазерного излучения и интенсивностью, значительно превосходящей получаемую в традиционных источниках СИ так называемого третьего поколения.

Идея российских ученых из новосибирского ИЯФ Евгения Салдина, Анатолия Кондратенко и Ярослава Дербенева (~1987г.). Они показали как подобрать параметры ондулятора, чтобы упорядочить движение электронов для увеличения мощности излучения более чем в миллион раз. ₆₆

§5. Другие источники рентгеновского излучения Европейский рентгеновский лазер на свободных электронах (European XFEL)

DESY's accelerator control center, European XFEL section.

