Контрольные вопросы по спецкурсу "Физические основы рентгеновского дифракционного анализа"

- 1. Определение рентгеновского излучения (природа, спектральная область (Å, эВ)).
- 2. Конструкция рентгеновской трубки. (Утверждения, схема, материал анода, характерные значения основных характеристик: ускоряющего напряжения, электронного тока, мощности, коэффициента полезного действия.) Зависимость рентгеновского спектра от ускоряющего напряжения, электронного тока и материала анода.
- 3. Свойства тормозного спектра рентгеновского излучения: коротковолновая граница, длина волны максимума интенсивности излучения. (Утверждения, графики, уравнения, характерные значения.)
- 4. Свойства характеристического спектра рентгеновского излучения: условие и схема возникновения, К-, L-, М-, ... серии линий, закон Мозли, мультиплетная структура. Правила отбора. (Утверждения, графики, уравнения, характерные значения.)
- 5. Классификация взаимодействий рентгеновского излучения с веществом (схема). Характеристики рассеяния: индикатриса, полное сечение, дифференциальное сечение, коэффициент, линейный коэффициент и их взаимосвязь. (Утверждения, рисунки, формулы, единицы измерения.)
- 6. Классификация взаимодействий рентгеновского излучения с веществом (схема). Свойства упругого когерентного рассеяния на электроне: полное сечение, интенсивность, индикатриса, поляризация. Неупругое рассеяние Комптон-эффект. Зависимости интенсивностей упругого и неупругого рассеяния от числа электронов в атоме. (Утверждения, рисунки, формулы.)
- 7. Классификация взаимодействий рентгеновского излучения с веществом (схема). Неупругое поглощение фотоэффект: край полосы поглощения, тонкая структура сечения, селективный фильтр, рентгеновская флюоресценция и Оже-эффект. (Утверждения, схемы, рисунки, формулы.)
- 8. Понятия кристаллографии: структура и узлы кристалла, пространственная решетка, атомный и векторный базисы решетки, трансляция, вектор и период трансляции, элементарная ячейка и ее параметры (метрика). Правила выбора элементарной ячейки (правила Браве). Вектор пространственной решетки. (Определения, обозначения, формулы, рисунки.)
- 9. Кристаллографические индексы узла, узловой прямой (ряда), узловой плоскости. Индексы Миллера и уравнение узловой плоскости в целых числах. Обратная решетка и ее свойства: базис, объем и векторы обратной решетки. Взаимосвязь вектора обратной решетки и узловой плоскости: взаимная ориентация и численная связь. (Определения, обозначения, формулы, рисунки.)
- 10. Основные понятия симметрии кристаллической решетки: операция симметрии, элемент симметрии, произведение операций симметрии. Понятие

группы операций симметрии, групповые аксиомы, порядок и генератор группы, подгруппы. (Определения, утверждения, символьное и графическое обозначения, формулы, рисунки.)

- 11. Точечные группы (кристаллографические классы) симметрии, операции и элементы симметрии: международная система обозначений, основные и составные операции симметрии, взаимосвязь операций инверсионного и зеркального поворотов, число точечных групп. Принципы построения международных обозначений кристаллографических классов. (Определения, утверждения, символьное и графическое обозначения, формулы, рисунки.)
- 12. Пространственные группы симметрии: операции и элементы симметрии основные и комбинированные, закрытые и открытые, винтовая ось, плоскость скользящего отражения, число пространственных групп. Подгруппы трансляций (решетки Браве) и вращений. Точки элементарной ячейки общего и частного положений. (Определения, утверждения, символьное и графическое обозначения, формулы, рисунки.)
- 13. Особенное и симметрически эквивалентные направления в кристалле. Категории, сингонии и классы, их число. Координатные системы решеток и типы решеток Браве. Принципы построения международных обозначений пространственных групп. (Определения, утверждения, символьное и графическое обозначения, формулы, рисунки.)
- 14. Основные положения кинематической теории рассеяния рентгеновских лучей. (Утверждения, характерные величины, формулы.)
- 15. Рассеяние рентгеновского излучения электроном. Напряженность электрического поля рассеянной волны при линейно поляризованном излучении падающей волны. Рассеивающая способность электрона. Радиус Лоренца. (Утверждения, формулы, рисунки, оценки физических величин.)
- 16. Интенсивность рассеянной электроном волны при линейной и естественной поляризации. Множитель Томсона и фактор поляризации. Полное сечение и коэффициент рассеяния электроном. (Утверждения, формулы, рисунки, оценки физических величин.)
- 17. Рассеяние монохроматического излучения на протяженном объекте. Рассеивающая способность электрона. Вектор рассеяния. Фурьетрансформанта протяженного объекта и ее свойства. (Рисунки, формулы, пояснения.)
- 18. Интерференционная функция протяженного объекта. Взаимосвязь комплексной амплитуды и интенсивности рассеянного излучения с Фурье трансформантой. (Определения, формулы, рисунки.)
- 19. Фурье-трансформанта электронной плотности атома атомная амплитуда рассеяния и ее свойства. (Формулы, рисунок, пояснения.)
- 20. Фурье-трансформанта дискретной совокупности (конфигурации) рассеивающих объектов. (Формулы, рисунок, пояснения.)

- 21. Фурье-трансформанта элементарной ячейки (структурная амплитуда). Погасания для различных типов центрировки элементарной ячейки: примитивная и базоцентрированная решетки Бравэ. Координатный базис. (Формулы, рисунки, пояснения.)
- 22. Фурье-трансформанта элементарной ячейки (структурная амплитуда). Погасания для различных типов центрировки элементарной ячейки: объемно-центрированная и гранецентрированная решетки Бравэ. Координатный базис. (Формулы, рисунки, пояснения.)
- 23. Фурье-трансформанта кристалла, структурная амплитуда. Сумма Лауэ. (Определения, формулы, пояснения.)
- 24. Положения кинематической теории рассеяния рентгеновских лучей и требования к объекту исследования. Классификация регулярных совокупностей атомов. (Утверждения, оценка величин, пояснения.)
- 25. Учет поглощения излучения в объекте в симметричном случае Лауэ. Фактор поглощения, его зависимость от толщины кристаллической пластинки. (Формулы, рисунки, пояснения.)
- 26. Интерференционная функция Лауэ и ее свойства. Условия Лауэ, амплитуда и ширина главных максимумов.
- 27. Интерпретация условий Лауэ и методы получения дифракционных картин (Лауэ, вращения и Дебая-Шеррера). (Формулы, рисунки, утверждения.)
- 28. Графическая интерпретация условий Лауэ построение Эвальда. Изобразить случаи методов Лауэ и Дебая-Шеррера. (Формулы, рисунки, пояснения.)
- 29. Условия Лауэ и вектор рассеяния. Вывод закона Вульфа-Брэгга из условий Лауэ. (Формулы, рисунки, утверждения.)
- 30. Связь размера и формы узла обратной решетки с размером и формой кристалла. Вывод формулы Шеррера. (Формулы, рисунки, пояснения.)
- 31. Влияние текстуры поликристаллического образца. (Рисунки, пояснения.)
- 32. Интегральная интенсивность рассеяния поликристаллом. Фактор повторяемости. Геометрический фактор Лоренца для поликристалла. (Формулы, рисунки, пояснения.)
- 33. Интегральная интенсивность Брэгговского отражения для кристаллической пластинки в симметричном случае Брэгга. Коэффициент отражения от одной атомной плоскости и рассеивающая способность единицы объема кристалла. Геометрический фактор Лоренца для монокристалла. (Формулы, рисунки, пояснения.)
- 34. Динамические (тепловые) искажения: диффузное рассеяние и фактор Дебая-Валлера. (Формулы, рисунки, пояснения.)

- 35. Поправки на экстинкцию. Первичная и вторичная экстинкции. Коэффициент вторичной экстинкции. (Определения, формулы, рисунки, пояснения.)
- 36. Учет поглощения излучения в объекте в симметричном случае Брэгга. Фактор поглощения, его зависимость от толщины кристаллической пластинки. (Формулы, рисунки, пояснения.)
- 37. Общая формула структурного анализа для интегральных интенсивностей рефлексов и интенсивностей в точках дифрактограммы рассеянного излучения. (Формула, пояснения.)