Материалы к Главе V

Оценка поляризуемости молекулы β

<u>Модель</u>: молекула (атом) – равномерно заряженное электронное облако радиуса $r_{\rm at}$ с положительным точечным зарядом +q в центре.

С помощью <u>электростатической теоремы Гаусса</u> получим напряженность электрического поля, создаваемого электронами в области расположения положительного заряда, смещенного из центра распределения заряда на расстояние *r*:

Если l – взаимное смещение ядра и электронов вдоль внешнего поля E', то в состоянии равновесия:

$$qE(l) = \frac{1}{4\pi\epsilon_0} \cdot \frac{q^2}{r_{\rm aT}^3} l = q \frac{p}{4\pi\epsilon_0 r_{\rm aT}^3} = qE',$$

$$p = 4\pi\epsilon_0 r_{\rm aT}^3 E' = \epsilon_0 \beta E',$$

$$\beta = 4\pi r_{\rm aT}^3 \cong 4 \cdot 3.14 \cdot (10^{-10})^3 \cong 10^{-29} \,\text{m}^3.$$

Факты, подтверждающие формулу Моссоти-Клаузиуса

Если *N*_A – число Авогадро, а ρ – плотность и μ – молярная масса вещества, то величина

$$R = \frac{n^2 - 1}{n^2 + 1} \cdot \frac{\mu}{\rho} = \frac{N\beta}{3} \cdot \frac{\mu}{\rho} = \frac{N\beta}{3} \cdot \frac{m_a N_A}{m_a N} = \frac{N_A \beta}{3} - const(\rho),$$

называемая молекулярной рефракцией, не зависит от плотности, что и наблюдается в эксперименте.

Если мы имеем дело со смесью *г* компонент, то:

$$N = \sum_{i=1}^r N_i, \ C_i \equiv \frac{N_i}{N},$$

где C_i – концентрация *i*-ой компоненты. Очевидно, что средняя молярная масса <µ>, плотность смеси ρ и средний коэффициент электронной поляризуемости молекулы β равны:

$$\langle \mu \rangle = \frac{\sum_{i=1}^{r} N_i \mu_i}{N} = \sum_{i=1}^{r} C_i \mu_i, \ \rho = \frac{N}{N_A} \sum_{i=1}^{r} C_i \mu_i = \frac{N}{N_A} \langle \mu \rangle,$$

$$\beta = \frac{\sum_{i=1}^{r} N_i \beta_i}{N} = \sum_{i=1}^{r} C_i \beta_i.$$

Для многокомпонентной системы молекулярная рефракция равна:

$$R = \frac{n^2 - 1}{n^2 + 2} \cdot \frac{\langle \mu \rangle}{\rho} = \frac{n^2 - 1}{n^2 + 2} \cdot \frac{\sum_{i=1}^r C_i \mu_i}{\rho} = \sum_{i=1}^r C_i \frac{n^2 - 1}{n^2 + 2} \cdot \frac{\mu_i}{\rho} = \sum_{i=1}^r C_i R_i.$$

Как видим, молекулярная рефракция аддитивна, а это дает возможность анализа концентрации компонент в бинарных системах.

Точность определения концентрации оптическим методом ограничена точностью определения плотности, поскольку точность определения коэффициента преломления значительно выше.

Например, для системы вода-бензол – 0.008%, вода-спирт – 0.004%.

Классическая электронная теория дисперсии. Плазменная частота.

Рассмотрим атом с одним <u>оптическим</u> электроном массой *m* и зарядом *q*.

Учтем, что $m_{\rm p} / m_{\rm e} \cong 1836$ и $F_E >> F_B$.

Электрон рассматривается как затухающий гармонический осциллятор:

 $m\ddot{\mathbf{x}} = -k\mathbf{x} - \gamma \dot{\mathbf{x}} + q\mathbf{E}'(t),$

где x(E') – смещение электрона относительно ядра атома под действием локального электрического поля E', -kx – квазиупругая сила, $-\gamma \dot{x}$ – сила трения, введенная для учета поглощения и излучения света электроном.

Используя комплексное представление E'(t) запишем уравнение движения в случае воздействия на него <u>гармонической</u> волны:

$$\ddot{\boldsymbol{x}} + 2\delta \dot{\boldsymbol{x}} + \omega_0^2 \boldsymbol{x} = \frac{q}{m} \boldsymbol{A}'(\boldsymbol{r}) e^{i\omega t}.$$

Здесь $\delta \equiv \frac{\gamma}{2m}$ – коэффициент затухания, $\omega_0 \equiv \sqrt{k/m}$ – собственная

частота колебаний. Поскольку $x \le r_{ar} << \lambda$, то r - paguyc-bectop <u>атома</u>, которому принадлежит оптический электрон.

Ищем решение в виде $\mathbf{x}(t) = \mathbf{x}_0 e^{i\omega t}$:

$$\mathbf{x}_0 \left(-\omega^2 + i\omega 2\delta + \omega_0^2\right) e^{i\omega t} = \frac{q}{m} \mathbf{A}' e^{i\omega t},$$
$$\mathbf{x}_0 \left(-\omega^2 + i\omega 2\delta + \omega_0^2\right) e^{i\omega t} = \frac{q}{m} \mathbf{A}' e^{i\omega t},$$

$$\boldsymbol{x} = \frac{q}{m} \cdot \frac{1}{\omega_0^2 - \omega^2 + i2\delta\omega} \boldsymbol{E}$$

Электрический дипольный момент атома (молекулы) равен:

$$\boldsymbol{p} = q\boldsymbol{x} = \frac{q^2}{m} \cdot \frac{1}{\omega_0^2 - \omega^2 + i2\delta\omega} \boldsymbol{E}' = \varepsilon_0 \boldsymbol{\beta} \boldsymbol{E}',$$

а поляризуемость молекулы (атома) –

$$\hat{\beta}(\omega) = \frac{q^2}{m\varepsilon_0} \cdot \frac{1}{\omega_0^2 - \omega^2 + i2\delta\omega}.$$

Как видим:

1) смещение электрона x под действием светового поля происходит коллинеарно вектору напряженности $E' - x \updownarrow f E';$

2) $\hat{\beta}(\omega)$ зависит (как и *P*) от частоты ω светового поля и характеристик δ и ω_0 оптического электрона в молекуле;

3) в случае затухания (поглощения) поляризуемость молекулы $\hat{\beta}$ (и $\hat{\kappa}$, и $\hat{\epsilon}$) оказывается комплексной величиной, что означает наличие разности фаз в колебании дипольного момента p (вектора поляризации P) и напряженности локального электрического поля E'.

Подставим поляризуемость молекулы β̂ в формулы для диэлектрической проницаемости разреженных и плотных сред:

$$\hat{\varepsilon} - 1 = N\hat{\beta} = \frac{Nq^2}{m\varepsilon_0} \cdot \frac{1}{\omega_0^2 - \omega^2 + i2\delta\omega} = \omega_{\Pi}^2 \frac{1}{\omega_0^2 - \omega^2 + i2\delta\omega},$$
$$\frac{\hat{\varepsilon} - 1}{\hat{\varepsilon} + 2} = \frac{N\hat{\beta}}{3} = \frac{1}{3} \cdot \frac{Nq^2}{m\varepsilon_0} \cdot \frac{1}{\omega_0^2 - \omega^2 + i2\delta\omega} = \frac{\omega_{\Pi}^2}{3} \cdot \frac{1}{\omega_0^2 - \omega^2 + i2\delta\omega}.$$
$$\hat{\varepsilon} = \varepsilon - i\varepsilon' - \text{комплексная диэлектрическая проницаемость среды,}$$
$$\omega_{\Pi} = \sqrt{\frac{Nq^2}{m\varepsilon_0}} - \mathbf{п}$$
лазменная частота (характеристика среды).

Оценка плазменной частоты ω_{π} и плазменной длины волны λ_{π} . <u>1. Для конденсированных сред</u> – $N = 10^{28}$ м³:

$$\begin{split} & \overline{\omega_{\Pi}} = \sqrt{\frac{Nq^2}{m\epsilon_0}} = 1.6 \cdot 10^{-19} \sqrt{\frac{10^{28} \cdot 4 \cdot 3.14 \cdot 9 \cdot 10^9}{9.1 \cdot 10^{-31}}} \cong 5.6 \cdot 10^{15} \text{ c}^{-1}, \\ & \lambda_{\Pi} = \frac{2\pi c}{\omega_{\Pi}} \cong \frac{6.28 \cdot 3 \cdot 10^8}{5.6 \cdot 10^{15}} \cong 0.34 \text{ мкм (ближняя УФ область).} \\ & \frac{2. \text{ Для разреженных газов} - N = 10^{25} \text{ м}^3: \\ & \omega_{\Pi} = \sqrt{\frac{Nq^2}{m\epsilon_0}} = 1.6 \cdot 10^{-19} \sqrt{\frac{10^{25} \cdot 4 \cdot 3.14 \cdot 9 \cdot 10^9}{9.1 \cdot 10^{-31}}} \cong 1.8 \cdot 10^{14} \text{ c}^{-1}, \\ & \lambda_{\Pi} = \frac{2\pi c}{\omega_{\Pi}} \cong \frac{6.28 \cdot 3 \cdot 10^8}{1.8 \cdot 10^{14}} \cong 10.5 \text{ мкм (ИК область).} \\ & \frac{2.16 \cdot 10^{-19}}{1.8 \cdot 10^{14}} \cong 10.5 \text{ мкм (ИК область).} \\ & \frac{10}{2.16} = 1.6 \cdot 10^{-19} \sqrt{\frac{10}{16} \times 10^{-19}} \approx 10^{19} \text{ c}^{-1} > \infty_{\Pi}, n \cong 1. \end{split}$$

4

Комплексный показатель преломления:

 $\hat{n} = \sqrt{\hat{\varepsilon}} = n - in'.$

Комплексное волновое число для волны в среде:

$$\hat{k} = k - ik' = k_0 \hat{n} = k_0 (n - in') = \frac{\omega}{c} (n - in') -.$$

Плоская гармоническая волна вдоль оси Z:

$$E(t,z) = A(z)e^{i\omega t} = A_0 e^{-i\hat{k}z}e^{i\omega t} = A_0 e^{-ikz}e^{-k'z}e^{i\omega t} = A_0 e^{-k'z}e^{i(\omega t - kz)},$$

Закон Бугера:

$$I(z) = \frac{1}{2} \left\langle \left| E(t,z) \right|^2 \right\rangle = I_0 e^{-2k'z} = I_0 e^{-\alpha z},$$

где $\alpha = 2k' = 2\frac{\omega}{c}n'$ – линейный коэффициент поглощения

Для разреженных сред
$$(\hat{n} \sim 1)$$
:

$$\frac{\hat{n}^2 - 1}{\hat{n}^2 + 2} = \frac{(\hat{n} - 1)(\hat{n} + 1)}{3} \cong \frac{2(\hat{n} - 1)}{3} \cong \frac{N\hat{\beta}}{3} = \frac{\omega_{\pi}^2}{3} \cdot \frac{1}{\omega_0^2 - \omega^2 + i2\delta\omega},$$

$$n(\omega) = 1 + \frac{\omega_{\pi}^2}{2} \cdot \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + 4\delta^2\omega^2},$$

$$\alpha(\omega) = 2\frac{\omega}{c}n' = \frac{\omega_{\pi}^2}{c} \cdot \frac{2\delta\omega^2}{(\omega_0^2 - \omega^2)^2 + 4\delta^2\omega^2}.$$

$$n(\omega), \qquad Oбласть нормальной дисперсии (dn/dw>0)
1 + $\frac{\omega_n^2}{2\omega_0^2}$ $n(\omega)$
1 - $\alpha(\omega)$
0 $\omega < c$
 $\omega < c$
 $\omega < c$
 $\omega = n(\omega_0 \pm \delta) \cong 1 \mp \frac{\omega_n^2}{8\omega_0\delta}$
 $\omega > c$
 $\omega > c$
 $\omega = 0$
 $\omega = 1$
 $\omega =$$$

Факты, подтверждающие теорию дисперсии Лорентца

1. <u>Нормальная дисперсия</u>. Прозрачные оптические материалы должны обладать нормальной дисперсией. Короткие волны должны преломляться сильнее, чем длинные. Это наблюдается во всех прозрачных средах.

2. <u>Аномальная дисперсия</u>. Существование аномальной дисперсии, предсказываемое теорией Лорентца, также подтверждается экспериментом. Аномальная дисперсия имеет место в узкой области частот вблизи линии поглощения, поэтому наблюдать ее – трудная экспериментальна задача.

3. Дисперсия в области низких частот. Для разреженной газообразной среды в пределе низких частот $\omega << \omega_0$ нетрудно получить дисперсионную формулу Коши:

$$n-1 = \frac{\omega_{\pi}^{2}}{2} \cdot \frac{\omega_{0}^{2} - \omega^{2}}{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + 4\delta^{2}\omega^{2}} \cong \frac{\omega_{\pi}^{2}}{2} \cdot \frac{1}{\omega_{0}^{2} - \omega^{2}} = \frac{\omega_{\pi}^{2}}{2\omega_{0}^{2}} \left(1 + \frac{\omega^{2}}{\omega_{0}^{2}}\right),$$

$$n-1 = A + \frac{B}{\lambda^{2}}.$$

Эксперимент показывает, что эта формула хорошо описывает дисперсию газов в видимой и инфракрасной областях спектра.

4. <u>Дисперсия в области высоких частот</u>. Для любой среды в пределе высоких частот $\omega >> \omega_0$ с учетом $\hat{n} \rightarrow n \rightarrow 1$ получим:

$$\frac{\hat{n}^2 - 1}{\hat{n}^2 + 2} \cong \frac{n^2 - 1}{3} = \frac{\omega_{\pi}^2}{3} \cdot \frac{1}{\omega_0^2 - \omega^2 + i2\delta\omega} \cong -\frac{\omega_{\pi}^2}{3\omega^2},$$
$$n^2 \cong 1 - \frac{\omega_{\pi}^2}{\omega^2}.$$

5. Модель Лорентца нашла свое подтверждение в <u>квантовой</u> <u>теории</u>, которая показывает, что при не очень сильных световых полях (когда можно пренебречь изменением заселенностей квантовых уровней под действием света) динамика электрического дипольного момента атома действительно описывается уравнением классического социллятора.

Дисперсионные формулы

7

Распространение светового импульса в прозрачной диспергирующей среде (при $|\omega_0 - \omega| > \delta$: $\hat{k}(\omega) \cong k(\omega)$)

$$\begin{array}{c|c}
E_0(t) \\
\hline
0 \\
\hline
z \\
\hline
Z
\end{array}$$

Три этапа решения.

1. <u>Фурье-анализ</u> входного импульса $E_0(t)$:

$$E_0(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_0(i\omega) e^{i\omega t} d\omega, \ \text{где:} E_0(i\omega) = \int_{-\infty}^{\infty} E_0(t') e^{-i\omega t'} dt'.$$

2. <u>Преобразование</u> спектральных компонент входного импульса $E_0(t)$ диспергирующей средой:

$$E(i\omega, z) = E_0(i\omega)e^{-ik(\omega)z}$$

3. Фурье-синтез импульса на выходе:

$$E(t,z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} E(i\omega,z) e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_0(t') e^{-ik(\omega)z} e^{i\omega(t-t')} dt' d\omega.$$

<u>Линейная прозрачная среда с дисперсией первого порядка</u> – $k(\omega) \cong k_0 + k'_0(\omega - \omega_0)$. Меняя порядок интегрирования, получим:

$$\begin{split} E(t,z) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E_{0}(t') e^{-i\left(k_{0}+k_{0}'(\omega-\omega_{0})\right)^{2}} e^{i\omega(t-t')} \mathrm{d}\omega \mathrm{d}t' = \\ &= e^{-i\left(k_{0}-k_{0}'\omega_{0}\right)^{2}} \int_{-\infty}^{\infty} \left(E_{0}(t') \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega\left(-k_{0}'z+t-t'\right)^{2}} \mathrm{d}\omega \right) \mathrm{d}t' = \\ &= e^{-i\left(k_{0}-k_{0}'\omega_{0}\right)^{2}} \int_{-\infty}^{\infty} E_{0}(t') \delta\left(t'-\left(t-k_{0}'z\right)\right) \mathrm{d}t' = \\ &= e^{-i\left(k_{0}-k_{0}'\omega_{0}\right)^{2}} E_{0}(t-k_{0}'z); \\ I(t,z) &= \frac{1}{2} \left\langle \left| E(t,z) \right|^{2} \right\rangle = \frac{1}{2} \left\langle \left| E_{0}(t-k_{0}'z) \right|^{2} \right\rangle = I_{0}(t-k_{0}'z). \end{split}$$

<u>В среде с дисперсией первого порядка узкополосный световой</u> импульс с несущей частотой ω_0 распространяется без изменения формы с постоянной **групповой скоростью** u_0 :

$$d(t - k_0 z) = dt - k_0 dz = 0, \ u_0 = \frac{dz}{dt} = \frac{1}{k_0} = \frac{d\omega}{dk}\Big|_{\omega_0} - const.$$

Дисперсионное расплывание волновых пакетов

В линейных прозрачных <u>средах с дисперсией второго и более</u> <u>порядков</u> групповая скорость $u(\omega)$ зависит от частоты света, имеет место <u>дисперсия групповых скоростей</u>:

$$k(\omega) = k_0 + k'_0 (\omega - \omega_0) + \frac{1}{2} k''_0 (\omega - \omega_0)^2 + \dots,$$
$$u(\omega) = \frac{d\omega}{dk} = \frac{1}{\frac{1}{\frac{dk}{d\omega}}} = \frac{1}{\frac{1}{\frac{k'_0}{\omega} + k''_0}(\omega - \omega_0) + \dots}.$$

Рассмотрим два узкополосных волновых пакета (импульса) с частотами ω_1 и ω_2 на краях частотного интервала $\Delta \omega = \omega_2 - \omega_1$ исходного светового импульса (см. рис.). При этом для волновых пакетов среда является диспергирующей средой с дисперсией первого порядка.

Эти пакеты вначале находятся вместе в начале координат, а затем распространяются в пространстве с разными групповыми скоростями u_1 и u_2 . За время t эти пакеты пройдут расстояния z_1 и z_2 соответственно (см. рис.).

В точке с координатой *z*¹ после фиксации первого пакета второй пакет будет зафиксирован через время:

$$\Delta t = \frac{\Delta z}{u_2} = \frac{u_1 - u_2}{u_2} t = \frac{u_1 - u_2}{u_2 u_1} z_1 = \left(\frac{1}{u_2} - \frac{1}{u_1}\right) z_1 = \left(k_2' - k_1'\right) z_1 \cong k_0'' \Delta \omega z_1 \cong \frac{2\pi k_0''}{\tau} z_1.$$

9

Из-за такой задержки между пакетами начнет увеличиваться длительность импульса примерно на ту же величину. Выберем расстояние *z*_{дисп} такое, чтобы задержка между пакетами Δt равнялась длительности импульса τ в начале процесса, и назовем ее дисперсионной длиной импульса в данной среде, тогда:

$$z_{\mathrm{дисп}} = \frac{\tau^2}{2\pi k_0^{"}}.$$

Как видим, чем короче исходный импульс (шире его частотный спектр), тем быстрее он расплывается.

Дисперсионная длина светового импульса в среде – расстояние вдоль направления распространения светового импульса в прозрачной диспергирующей среде, на котором его длительность увеличивается вдвое.

Дальняя дисперсионная зона светового импульса в среде – расстояния z, существенно превышающие дисперсионную длину *z* >> *z*_{дисп}. В дальней дисперсионной зоне импульс "забывает" свою первоначальную форму.

Оценка дисперсионной длины светового импульса для оптического волокна. Пусть $\tau \sim 1 \text{ пс} = 10^{-12} \text{ с и } k_0^{"} = 3 \cdot 10^{-26} \text{ c}^2/\text{м}$, тогда: $z_{\text{дисп}} = \frac{\tau^2}{2\pi k_0^{"}} = \frac{10^{-24}}{6.28 \cdot 3 \cdot 10^{-26}} = 5.3 \text{ м}.$

Оптические явления на границе раздела прозрачных изотропных немагнитных диэлектриков

 $(\varepsilon_{1,2}, \mu_{1,2}, k_{1,2} - \text{веществ.}; \varepsilon_1 \neq \varepsilon_2, \mu_{1,2} = 1; \sigma = 0, i = 0)$

1. Законы отражения и преломления света

Плоская монохроматическая линейно поляризованная световая волна:

$$E = Ae^{i(\omega t - k \cdot r)}, E_{1} = E_{i} + E_{r}, E_{2} = E_{t}.$$

Граничное условие $E_{1\tau} = E_{2\tau}$:
 $A_{i\tau}e^{i(\omega_{i}t - k_{i} \cdot r)} + A_{r\tau}e^{i(\omega_{r}t - k_{r} \cdot r)} = A_{t\tau}e^{i(\omega_{t}t - k_{t} \cdot r)}.$
В любой момент времени t:
 $\omega_{i} = \omega_{r} = \omega_{t}.$
В любой момент времени t:
 $\omega_{i} = \omega_{r} = \omega_{t}.$
Для всех точек, лежащих на границе
раздела двух сред:
 $k \cdot r = (k_{n} + k_{\tau}) \cdot r_{\tau} = k_{\tau} \cdot r_{\tau}$
 $k_{i\tau} = k_{r\tau} = k_{t\tau},$
 $k_{i} \sin \vartheta_{i} = k_{r} \sin \vartheta_{r} = k_{t} \sin \vartheta_{t},$
 $k_{0}n_{1} \sin \vartheta_{i} = k_{0}n_{1} \sin \vartheta_{r} = k_{0}n_{2} \sin \vartheta_{t},$
 $n_{1} \sin \vartheta_{i} = n_{1} \sin \vartheta_{r} = n_{2} \sin \vartheta_{t}.$

- 1. Частоты падающей, отраженной и преломленной волн равны.
- 2. Волновые векторы падающей, отраженной и преломленной волн лежат в одной плоскости с нормалью к поверхности раздела двух сред в точке падения.
- **3.** Угол падения равен углу отражения $\vartheta_i = \vartheta_r$.
- **4.** Закон голландского ученого Виллеброрда Снеллиуса (1621 г.): $\frac{\sin \vartheta_{i}}{\sin \vartheta_{t}} = \frac{n_{2}}{n_{1}} \equiv n.$

Плоскость падения плоской световой волны – плоскость, образованная волновым вектором падающей волны и нормалью к поверхности раздела сред.

2. Формулы Френеля

Граничные условия – $D_{2n} = D_{1n}$, $B_{2n} = B_{1n}$, $E_{2\tau} = E_{1\tau}$, $H_{2\tau} = H_{1\tau}$. Свойства плоских волн – $[nE] = \upsilon B$, $[nH] = -\upsilon D$; $\sqrt{\varepsilon_0 \varepsilon} E = \sqrt{\mu_0 \mu} H$. Материальные уравнения – $D_{1,2} = \varepsilon_0 \varepsilon_{1,2} E_{1,2}$, $B_{1,2} = \mu_0 H_{1,2}$.

Падающую плоскую волну представим в виде суперпозиции двух плоских волн с взаимно перпендикулярными поляризациями – параллельно E_{\parallel} и перпендикулярно E_{\perp} плоскости падения (см. рис.).

Комплексные коэффициенты отражения $(r_{\parallel}, r_{\perp})$ и пропускания $(t_{\parallel}, t_{\perp})$ (по амплитуде):

$$\begin{split} r_{\parallel} &= \frac{A_{r\parallel}}{A_{i\parallel}} = -\frac{\mathrm{tg}(\vartheta_{\mathrm{i}} - \vartheta_{\mathrm{t}})}{\mathrm{tg}(\vartheta_{\mathrm{i}} + \vartheta_{\mathrm{t}})} = -\frac{n^{2}\cos\vartheta_{\mathrm{i}} - \sqrt{n^{2} - \sin^{2}\vartheta_{\mathrm{i}}}}{n^{2}\cos\vartheta_{\mathrm{i}} + \sqrt{n^{2} - \sin^{2}\vartheta_{\mathrm{i}}}},\\ t_{\parallel} &= \frac{A_{t\parallel}}{A_{i\parallel}} = \frac{2\sin\vartheta_{\mathrm{t}}\cos\vartheta_{\mathrm{i}}}{\sin(\vartheta_{\mathrm{i}} + \vartheta_{\mathrm{t}})\cos(\vartheta_{\mathrm{i}} - \vartheta_{\mathrm{t}})} = \frac{2n\cos\vartheta_{\mathrm{i}}}{n^{2}\cos\vartheta_{\mathrm{i}} + \sqrt{n^{2} - \sin^{2}\vartheta_{\mathrm{i}}}},\\ r_{\perp} &= \frac{A_{\mathrm{r}\perp}}{A_{\mathrm{i}\perp}} = -\frac{\sin(\vartheta_{\mathrm{i}} - \vartheta_{\mathrm{t}})}{\sin(\vartheta_{\mathrm{i}} + \vartheta_{\mathrm{t}})} = \frac{\cos\vartheta_{\mathrm{i}} - \sqrt{n^{2} - \sin^{2}\vartheta_{\mathrm{i}}}}{\cos\vartheta_{\mathrm{i}} + \sqrt{n^{2} - \sin^{2}\vartheta_{\mathrm{i}}}},\\ t_{\perp} &= \frac{A_{\mathrm{t}\perp}}{A_{\mathrm{i}\perp}} = \frac{2\sin\vartheta_{\mathrm{t}}\cos\vartheta_{\mathrm{i}}}{\sin(\vartheta_{\mathrm{i}} + \vartheta_{\mathrm{t}})} = \frac{2\cos\vartheta_{\mathrm{i}} - \sqrt{n^{2} - \sin^{2}\vartheta_{\mathrm{i}}}}{\cos\vartheta_{\mathrm{i}} + \sqrt{n^{2} - \sin^{2}\vartheta_{\mathrm{i}}}}. \end{split}$$

 $n \equiv \frac{n_2}{n_1}$ – показатель преломления второй среды относительно первой. n_1 и n_2 – показатели преломления первой и второй сред.

<u>Нормальное падение луча</u>: $r = r_{\parallel} = r_{\perp} = \frac{1-n}{1+n}, t = t_{\parallel} = t_{\perp} = \frac{2}{1+n}.$

При
$$n = 1.5$$
:
 $r = -0.2, r^2 = 0.04 (4\%),$
 $t = 0.8, nt^2 = 0.96 (96\%).$

3. Эффект Брюстера

Эффект Шотландского ученого Дэвида Брюстера (1815 г.) – <u>яв-</u> <u>ление полной поляризации</u> (\perp плоскости падения) <u>отраженной волны</u> при $\vartheta_i + \vartheta_t = \pi/2$ (tg $(\vartheta_i + \vartheta_t) = \infty$) или при угле падения, равном углу Брюстера: $\frac{\sin \vartheta_i}{\sin \vartheta_t} = \frac{\sin \vartheta_B}{\sin(\pi/2 - \vartheta_B)} = \text{tg} \vartheta_B = \frac{n_2}{n_1} \Rightarrow \vartheta_B = \arctan \frac{n_2}{n_1} = \arctan \frac{n_2}{n_1}$

Поляризация обнаружена французским физиком Этьеном Луи Малюсом при <u>отражении</u> в 1808 г., а при <u>преломлении</u> в 1811 г.

Воздух – стекло
$$(n > 1)$$
:
 $\vartheta_{\rm B} = \arctan \frac{1.52}{1} = 56^{\circ}40',$
стекло – воздух $(n < 1)$:
 $\vartheta_{\rm B} = \arctan \frac{1}{1.52} = 33^{\circ}20'.$

Степень поляризации –

$$P = \frac{I_{\perp} - I_{\parallel}}{I_{\perp} + I_{\parallel}}, \ 0 \le P \le 1.$$

<u>Для прозрачных сред</u> (n_1 и n_2 – вещественны).

- **1.** На поверхности раздела двух сред <u>пока есть прошедшая волна</u> $(n < 1: при \ \vartheta_i < \vartheta_0)$ фазы падающей и прошедшей волн совпадают.
- 2. На поверхности раздела двух сред разность фаз (Δφ) между падающей и отраженной волн зависит от поляризации падающей волны и показателей преломления (см. табл.).

Табл. Знак коэффициентов и изменение фазы волны при прохождении и отражении от границы раздела двух сред

Коэфф.	$n \equiv \frac{n_2}{n_1}$	$\vartheta_i < \vartheta_B$	$\vartheta_i = \vartheta_B$	$\vartheta_{\mathrm{B}} < \vartheta_{\mathrm{i}} \le \pi/2(\vartheta_{0})$
$t_{\parallel}, t_{\perp} \; (\Delta \phi)$	<i>n</i> > 1	>0 (0)	>0 (0)	>0 (0)
	<i>n</i> < 1	>0 (0)	>0 (0)	>0 (0)
$r(\Lambda(0))$	n > 1	<0 ($\pm \pi$)	0	>0 (0)
/ (Δφ)	<i>n</i> < 1	>0 (0)	0	<0 (±π)
r_{\perp} ($\Delta \phi$)	<i>n</i> > 1	<0 (±π)	<0 (±π)	<0 (±π)
	<i>n</i> < 1	>0 (0)	>0 (0)	>0 (0)

4. Явление полного внутреннего отражения

При $n_2 < n_1$ (n < 1) существует угол полного внутреннего отражения $\vartheta_0 -$ <u>наименьший угол падения, при котором нет преломлен-</u><u>ной волны во второй среде</u>:

$$\sin \vartheta_0 = \frac{n_2}{n_1} = n, \ \vartheta_0 = \arcsin \frac{n_2}{n_1} = \arcsin(n).$$

В этом случае волна движется вдоль поверхности раздела с амплитудой, затухающей вглубь второй среды:

$$E_{t} = A_{t}e^{i(\omega t - k_{t} \cdot r)} = A_{t}e^{i(\omega t - k_{t} \sin \vartheta_{t} x - k_{t} \cos \vartheta_{t} z)}.$$

$$g_{i} \ge \vartheta_{0}$$

$$IIPH \ \vartheta_{i} \ge \vartheta_{0} \ \sin \vartheta_{i} \ge n \ \text{ и в соответ-}$$

$$CTBUH \ C \ 3aKOHOM \ CHEJJHYCA:$$

$$\cos \vartheta_{t} = \pm \sqrt{1 - \sin^{2} \vartheta_{t}} =$$

$$= \pm \frac{\sqrt{n^{2} - \sin^{2} \vartheta_{i}}}{n} = \pm i \frac{\sqrt{\sin^{2} \vartheta_{i} - n^{2}}}{n},$$

$$E_{t} = A_{t}e^{-k_{t}} \frac{\sqrt{\sin^{2} \vartheta_{i} - n^{2}}}{n} e^{i(\omega t - k_{t} \sin \vartheta_{t} x)} =$$

$$= A_{t}e^{-z/\Delta z}e^{i(\omega t - k_{t} \sin \vartheta_{t} x)}.$$

Глубина проникновения волны в среду Δz вдоль оси Z:

$$\Delta z = \frac{n}{k_{\rm t}\sqrt{\sin^2 \vartheta_{\rm i} - n^2}} = \frac{n\lambda_{\rm t}}{2\pi\sqrt{\sin^2 \vartheta_{\rm i} - n^2}}$$

Оценка глубины проникновения волны при $\vartheta_i \sim \pi/2$:

для
$$n = 0.80 - \Delta z \cong \frac{0.80}{6.28\sqrt{1 - 0.64}} \lambda_t \cong 0.21\lambda_t,$$

для $n = 0.95 - \Delta z \cong \frac{0.95}{6.28\sqrt{1 - 0.90}} \lambda_t \cong 0.48\lambda_t.$

5. Энергетические соотношения при преломлении и отражении света

Усредненный по времени разрешения прибора вектор Умова-Пойтинга S (плотность потока энергии световой волны с указанием направления потока) – произведение интенсивности волны на единичный вектор направления переноса энергии:

$$\langle \boldsymbol{S} \rangle = \boldsymbol{I}\boldsymbol{n} = \varepsilon_0 \varepsilon_0 \langle |\boldsymbol{E}|^2 \rangle \boldsymbol{n} = \sqrt{\frac{\varepsilon_0 \varepsilon}{\mu_0 \mu}} \cdot \frac{1}{2} \langle |\hat{\boldsymbol{E}}|^2 \rangle \boldsymbol{n} = \sqrt{\frac{\varepsilon_0 \varepsilon}{\mu_0 \mu}} \cdot \frac{1}{2} |\boldsymbol{A}|^2 \boldsymbol{n}$$

Коэффициент отражения (по энергии) *R* – модуль отношения плотностей потоков энергии вдоль нормали к поверхности раздела сред отраженной и падающей волн:

$$R \equiv \left| \frac{I_{\rm r} \cos(\pi - \vartheta_{\rm r})}{I_{\rm i} \cos \vartheta_{\rm i}} \right| = \frac{I_{\rm r} \cos \vartheta_{\rm r}}{I_{\rm i} \cos \vartheta_{\rm i}} = \frac{|A_{\rm r}|^2}{|A_{\rm i}|^2} = |r|^2,$$
$$R_{\parallel} = |r_{\parallel}|^2, \ R_{\perp} = |r_{\perp}|^2.$$

Коэффициент пропускания (по энергии) *T* – модуль отношения плотностей потоков энергии вдоль нормали к поверхности раздела сред прошедшей и падающей волн:

$$T \equiv \left| \frac{I_{t} \cos \vartheta_{t}}{I_{i} \cos \vartheta_{i}} \right| = \frac{I_{t} \cos \vartheta_{t}}{I_{i} \cos \vartheta_{i}} = \frac{\sqrt{\varepsilon_{2}} |A_{t}|^{2} \cos \vartheta_{t}}{\sqrt{\varepsilon_{1}} |A_{i}|^{2} \cos \vartheta_{i}} = \frac{n_{2}}{n_{1}} |t|^{2} \frac{\cos \vartheta_{t}}{\cos \vartheta_{i}},$$
$$T_{\parallel} = \frac{n_{2}}{n_{1}} |t_{\parallel}|^{2} \frac{\cos \vartheta_{t}}{\cos \vartheta_{i}}, T_{\perp} = \frac{n_{2}}{n_{1}} |t_{\perp}|^{2} \frac{\cos \vartheta_{t}}{\cos \vartheta_{i}}.$$

Из формул Френеля следует: R + T = 1 -закон сохранения энергии.

Закон изменения энергии электромагнитного поля в случае анизотропных сред

Получим закон изменения энергии электромагнитного поля в произвольной неподвижной, линейной, анизотропной (а также локальной, безынерционной и стационарной) среде, воспользовавшись уравнениями Максвелла.

Рассмотрим некоторый объем V, ограниченный поверхностью Σ, внутри которого имеются электромагнитное поле и движущиеся заряды (рис.).

Воспользуемся 3 и 4 уравнениями Максвелла:

$$\operatorname{rot} \boldsymbol{E} = -\frac{\partial \boldsymbol{B}}{\partial t}, \ \operatorname{rot} \boldsymbol{H} = \boldsymbol{j} + \frac{\partial \boldsymbol{D}}{\partial t}.$$

Умножим скалярно первое уравнение на H, а второе на E и вычтем одно из другого:

$$H \cdot \operatorname{rot} \boldsymbol{E} = -\boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t},$$

$$\boldsymbol{E} \cdot \operatorname{rot} \boldsymbol{H} = \boldsymbol{E} \cdot \boldsymbol{j} + \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t},$$

$$\boldsymbol{H} \cdot \operatorname{rot} \boldsymbol{E} - \boldsymbol{E} \cdot \operatorname{rot} \boldsymbol{H} = -\boldsymbol{E} \cdot \boldsymbol{j} - \boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} - \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t}.$$

B соответствии с формулой div $[\boldsymbol{a}\boldsymbol{b}] = \boldsymbol{b} \cdot \operatorname{rot} \boldsymbol{a} - \boldsymbol{a} \cdot \operatorname{rot} \boldsymbol{b}$ получим:
div $[\boldsymbol{E}\boldsymbol{H}] = -\boldsymbol{E} \cdot \boldsymbol{j} - \left(\boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t}\right).$

Воспользуемся выражением для объемной плотности энергии электромагнитного поля – $w = \frac{E \cdot D}{2} + \frac{H \cdot B}{2}$ и выясним, какая должна быть тензорная линейная связь между векторами электрического и между векторами магнитного полей, чтобы в правой части уравнения в скобках стояла скорость изменения объемной плотности энергии электромагнитного поля:

$$\boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} + \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} = \frac{\partial w}{\partial t} = \frac{\partial}{\partial t} \left(\frac{\boldsymbol{E} \cdot \boldsymbol{D}}{2} + \frac{\boldsymbol{H} \cdot \boldsymbol{B}}{2} \right) = \frac{1}{2} \left(\boldsymbol{E} \cdot \frac{\partial \boldsymbol{D}}{\partial t} + \frac{\partial \boldsymbol{E}}{\partial t} \cdot \boldsymbol{D} + \boldsymbol{H} \cdot \frac{\partial \boldsymbol{B}}{\partial t} + \frac{\partial \boldsymbol{H}}{\partial t} \cdot \boldsymbol{B} \right),$$

17

 $\boldsymbol{E}\cdot\boldsymbol{D}+\boldsymbol{H}\cdot\boldsymbol{B}=\boldsymbol{E}\cdot\boldsymbol{D}+\boldsymbol{H}\cdot\boldsymbol{B}.$

С учетом материальных уравнений $D_i = \sum \varepsilon_0 \varepsilon_{ij} E_j$ и $B_i = \sum \mu_0 \mu_{ij} H_j$:

$$\sum_{i,j} E_i \varepsilon_0 \varepsilon_{ij} \dot{E}_j - \sum_{i,j} \dot{E}_j \varepsilon_0 \varepsilon_{ji} E_i + \sum_{i,j} H_i \mu_0 \mu_{ij} \dot{H}_j - \sum_{i,j} \dot{H}_j \mu_0 \mu_{ji} H_i = 0,$$

$$\sum_{i,j} E_i \varepsilon_0 \left(\varepsilon_{ij} - \varepsilon_{ji} \right) \dot{E}_j + \sum_{i,j} H_i \mu_0 \left(\mu_{ij} - \mu_{ji} \right) \dot{H}_j = 0.$$

Так как это равенство должно выполняться для любых изменяющихся во времени электромагнитных полей, то:

 $\varepsilon_{ij} = \varepsilon_{ji}$ и $\mu_{ij} = \mu_{ji}$.

Для анизотропных сред достаточно единственного требования симметричности тензоров диэлектрической и магнитной проницаемостей.

Теперь воспользуемся <u>определением</u> вектора Умова-Пойтинга S = [EH] и законом Джоуля-Ленца $q = j \cdot E$. В результате получим закон изменения энергии электромагнитного поля в дифференциальной форме:

$$-\frac{\partial w}{\partial t} = q + \operatorname{div} S.$$

Здесь q – количество теплоты, выделяющееся в единице объема проводника в единицу времени в результате работы сил электрического поля волны. Сила со стороны магнитного поля работу не совершает, поскольку в соответствии с выражением для Амперовой составляющей силы Лоренца $F_L = qE + q[uB]$ она действует перпендикулярно скорости.

Проинтегрируем обе части уравнения по объему и воспользуемся математической теоремой Остроградского-Гаусса, тогда получим закон изменения энергии электромагнитного поля в интегральной форме:

$$-\frac{\partial W}{\partial t} = Q + \int_{\mathcal{V}} \operatorname{div} S \mathrm{d}V = Q + \oint_{\Sigma} S \cdot \mathrm{d}\sigma$$

Итак, убыль энергии электромагнитного поля в произвольном объеме в единицу времени равна сумме джоулевой теплоты, выделяемой в этом объеме в единицу времени, и потока электромагнитной энергии через поверхность, ограничивающую этот объем.

ВЫВОД УРАВНЕНИЯ ФРЕНЕЛЯ ДЛЯ ЛУЧЕВЫХ СКОРОСТЕЙ

Умножим обе части уравнений, связывающих полевые и материально-полевые вектора в плоской волне ($[nE] = \cup B$, $[nH] = -\cup D$) векторно слева на луч *s*:

 $\begin{bmatrix} s[nE] \end{bmatrix} = \upsilon[sB], \\ [s[nH]] = -\upsilon[sD].$

Воспользуемся известным математическим выражением для двойного векторного произведения, при этом учтем взаимную ориентацию луча и напряженностей электрического и магнитного полей в волне ($s \cdot E = 0$, $s \cdot H = 0$), а также соотношение между волновой и лучевой скоростями ($v = v_s \cos \alpha$):

$$[s[nE]] = n(sE) - E(sn) = -E(sn) = \upsilon[sB],$$

$$[s[nH]] = n(sH) - H(sn) = -H(sn) = -\upsilon[sD];$$

$$E = -\upsilon_s[sB],$$

$$H = \upsilon_s[sD].$$

Исключим теперь из уравнений вектора магнитного поля, и в результате получим уравнение, связывающее лучевую скорость v_s в заданном лучом *s* направлении с векторами электрического поля:

$$\boldsymbol{E} = -\mu_0 \upsilon_s^2 [\boldsymbol{s}[\boldsymbol{s}\boldsymbol{D}]],$$

$$\frac{1}{\mu_0 \upsilon_s^2} \boldsymbol{E} + \boldsymbol{s}(\boldsymbol{s}\boldsymbol{D}) - \boldsymbol{D} = 0.$$

Последнее уравнение полностью аналогично уравнению для фазовых скоростей $v (\mu_0 v^2 D + n(nE) - E = 0)$ с точностью до замены:

$$n \Rightarrow s, D \Leftrightarrow E, \mu_0 \upsilon^2 \Rightarrow \frac{1}{\mu_0 \upsilon_s^2}, \mu_0 \upsilon_I^2 \Rightarrow \frac{1}{\mu_0 \upsilon_I^2}.$$

В результате для лучевых скоростей получим:

$$\begin{split} \sum_{I} \frac{s_{I}^{2} \upsilon_{I}^{2}}{\upsilon_{I}^{2} - \upsilon_{s}^{2}} &= 0 - \mathbf{y} \mathbf{p} \mathbf{a} \mathbf{b} \mathbf{h} \mathbf{e} \mathbf{h} \mathbf{u} \mathbf{e} \ \mathbf{\Phi} \mathbf{p} \mathbf{e} \mathbf{h} \mathbf{e} \mathbf{л} \mathbf{s}, \\ \frac{1}{\upsilon_{s}^{2}} &= \sum_{I} \frac{1}{\upsilon_{I}^{2}} \left(\frac{E_{I}}{E}\right)^{2}, \\ \Pi \mathbf{p} \mathbf{u} \ \upsilon_{s}' \neq \upsilon_{s}'' \quad \mathbf{E}' \cdot \mathbf{E}'' = 0. \end{split}$$

ОСНОВНЫЕ ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ СВЕТА В АНИЗОТРОПНОЙ СРЕДЕ

1. Фазовая v = vn и лучевая $v_s = v_s s$ скорости распространения волны в общем случае не равны по модулю ($v = v_s \cos \alpha$) и не совпадают по направлению ($n \cdot s = \cos \alpha$).

2. Модули фазовой v и лучевой v_s скоростей распространения волны зависят только от ориентации векторов электрического поля волны относительно главных диэлектрических осей кристалла – $\upsilon\left(\frac{D}{D}\right), \upsilon_s\left(\frac{E}{F}\right).$

3. В данном направлении нормали *n* могут распространяться только две линейно поляризованные волны в общем случае с разными по модулю фазовыми скоростями – υ' , υ'' , векторы электрической индукции которых взаимно перпендикулярны – $D' \perp D''$.

4. В данном направлении луча *s* могут распространяться только две линейно поляризованные волны в общем случае с разными по модулю лучевыми скоростями – υ_s' , υ_s'' , векторы напряженности электрического поля которых взаимно перпендикулярны – $E' \perp E''$.

ЭЛЛИПСОИД ЛУЧЕВЫХ СКОРОСТЕЙ (ЭЛЛИПСОИД ФРЕНЕЛЯ)

Воспользуемся взаимосвязью модуля лучевой скорости υ_s и ориентации напряженности поля *E* относительно главных диэлектрических осей кристалла:

$$\frac{1}{\upsilon_s^2} = \sum_I \frac{1}{\upsilon_I^2} \left(\frac{E_I}{E}\right)^2, \ \sum_I \frac{\upsilon_s^2}{\upsilon_I^2} \left(\frac{E_I}{E}\right)^2 = 1.$$

Зададим координаты точки поверхности в главных осях, сделав замену переменных:

$$X_I = \upsilon_s \frac{E_I}{E}, \ \mathbf{R} = \upsilon_s \frac{\mathbf{E}}{E}, \ \mathbf{B}$$
 направлении $\mathbf{E} - \mathbf{R} = |\mathbf{R}| = \upsilon_s.$

В результате получим уравнение поверхности:

Эллипсоид лучевых скоростей (эллипсоид Френеля) — эллипсоид, главные оси которого совпадают с главными диэлектрическими осями X, Y и Z кристалла, а дины главных полуосей равны главным скоростям υ_X , υ_Y и υ_Z распространения света в среде.

В сечении лучевого эллипсоида, перпендикулярном лучу s, образуется эллипс, вдоль главных осей которого направлены напряженности E' и E'' двух волн, переносящие энергию вдоль s, а его главные полуоси равны модулям соответствующих лучевых скоростей υ_s' и υ_s'' этих волн.

КЛАССИФИКАЦИЯ АНИЗОТРОПНЫХ СРЕД

Оптическая ось – направление в кристалле (среде), перпендикулярное плоскости кругового сечения эллипсоида лучевых скоростей.

Всем лучам вдоль оптической оси соответствует одна и та же лучевая скорость (в общем случае при различных фазовых скоростях), а векторы напряженности электрического поля E могут колебаться в любом направлении, перпендикулярном лучу.

Двуосный кристалл – $\upsilon_X \neq \upsilon_Y \neq \upsilon_Z$ ($\varepsilon_X \neq \varepsilon_Y \neq \varepsilon_Z$; $n_X \neq n_Y \neq n_Z$).

Эллипсоид лучевых скоростей – двухоболочечная самопересекающаяся поверхность. Кристалл имеет две оптические оси, лежащие в главной плоскости, образованной главными диэлектрическими осями, для которых главные скорости (диэлектрические проницаемости, показатели преломления) имеют максимальное и минимальное значения.

Одноосный кристалл – $\upsilon_X = \upsilon_Y \neq \upsilon_Z$ ($\varepsilon_X = \varepsilon_Y \neq \varepsilon_Z$; $n_X = n_Y \neq n_Z$).

Эллипсоид лучевых скоростей – эллипсоид вращения вокруг оси, для которой главная скорость отлична от остальных (Х). При этом имеется только одна оптическая ось, совпадающая с осью вращения.

Изотропный кристалл – $\upsilon_X = \upsilon_Y = \upsilon_Z$ ($\varepsilon_X = \varepsilon_Y = \varepsilon_Z$; $n_X = n_Y = n_Z$). Эллипсоид лучевых скоростей – сфера. Все направления оптически эквивалентны и кристалл оптически изотропен.

ЛУЧЕВАЯ ПОВЕРХНОСТЬ

Воспользуемся уравнением Френеля для лучевых скоростей:

$$\sum_{I} \frac{s_{I}^{2} \upsilon_{I}^{2}}{\upsilon_{I}^{2} - \upsilon_{s}^{2}} = 0.$$

Зададим координаты точки поверхности в главных осях, сделав замену переменных:

$$X_I = \upsilon_s s_I, \ \boldsymbol{R} = \upsilon_s \boldsymbol{s} = \boldsymbol{v}_s, \ \boldsymbol{R} = |\boldsymbol{R}| = \upsilon_s.$$

В результате получим уравнение лучевой поверхности:

$$\sum_{I} \frac{X_{I}^{2} v_{I}^{2}}{v_{I}^{2} - R^{2}} = 0.$$

Лучевая (волновая) поверхность – поверхность, до которой доходит световое возбуждение из данной точки среды за фиксированный интервал времени.

Это двухоболочечная самопересекающаяся поверхность. В общем случае в каждом направлении из начала координат лучевая поверхность встречается два раза.

Главные координатные плоскости пересекают лучевую поверхность по эллипсу и окружности. При $\upsilon_X > \upsilon_Y > \upsilon_Z$:

Фронт волны для каждой точки лучевой поверхности (волны с заданным лучом) – плоскость, касательная к лучевой поверхности в этой точке.

ОДНООСНЫЙ КРИСТАЛЛ

Одноосный кристалл (среда) – кристалл (среда), для которого две главные скорости распространения волн равны:

 $\upsilon_{o} \equiv \upsilon_{X} = \upsilon_{Y} \neq \upsilon_{Z} \equiv \upsilon_{e} \ (\varepsilon_{o} \equiv \varepsilon_{X} = \varepsilon_{Y} \neq \varepsilon_{Z} \equiv \varepsilon_{e}; \ n_{o} \equiv n_{X} = n_{Y} \neq n_{Z} \equiv n_{e}).$ Для одноосного кристалла имеется:

- одна оптическая ось, совпадающая с осью вращения – главной диэлектрической осью, для которой диэлектрическая проницаемость отлична от остальных;

- эллипсоид лучевых скоростей – эллипсоид вращения;

- лучевая поверхность – совокупность сферы и эллипсоида вращения, вписанные друг в друга.

Главная плоскость (главное сечение) – плоскость, образованная лучом и оптической осью – (s,OO).

Обыкновенный (ordinary) луч – луч, вектор напряженности электрического поля которого перпендикулярен главной плоскости – $E_0 \perp (s, OO)$ (а значит и оптической оси).

Ему соответствует лучевая поверхность в виде сферы.

Фазовая и лучевая скорости совпадают – $v' = v'_s = v_o s$, их модули равны v_o и не зависят от направления ($n_o = s_o = s$, $\alpha_o = 0$, $n_o \cdot s_o = 1$).

Необыкновенный (extraordinary) луч – луч, вектор напряженности электрического поля которого лежит в главной плоскости – $E_{\rm e} \parallel (s, OO)$.

Ему соответствует лучевая поверхность в виде эллипсоида вращения.

Фазовая и лучевая скорости не совпадают по величине и направлению – $\boldsymbol{v}'' \neq \boldsymbol{v}_s''$, зависят от угла между лучом и оптической осью, при этом модули скоростей лежат в интервале значений $\upsilon'' < \upsilon_s'' \in (\upsilon_o, \upsilon_e]$ или $\upsilon'' < \upsilon_s'' \in [\upsilon_e, \upsilon_o)$ ($\boldsymbol{n}_e \neq \boldsymbol{s}_e = \boldsymbol{s}$, $\alpha_e \neq 0$, $\boldsymbol{n}_e \cdot \boldsymbol{s}_e = \cos \alpha_e$).

Отрицательный кристалл – $\upsilon_0 \equiv \upsilon_X = \upsilon_Y < \upsilon_Z \equiv \upsilon_e$ ($n_0 \equiv n_X = n_Y > n_Z \equiv n_e$) эллипсоид Френеля вытянут вдоль оси вращения Z; <u>лучевая сфера вписана в сплющенный вдоль оси Z лучевой эллипсо-ид вращения</u>. Исландский шпат – CaCO₃ с $n_0 = 1.658 > n_e = 1.486$.

Главные сечения лучевой поверхности одноосного отрицательного кристалла:

Положительный кристалл – $\upsilon_o \equiv \upsilon_X = \upsilon_Y > \upsilon_Z \equiv \upsilon_e$ ($n_o \equiv n_X = n_Y < n_Z \equiv n_e$); эллипсоид Френеля сплюснут вдоль оси Z; <u>лучевая</u> сфера охватывает вытянутый вдоль оси Z лучевой эллипсоид вращения. Кварц – SiO₂ с $n_o = 1.543 < n_e = 1.552$.

Главные сечения лучевой поверхности одноосного положительного кристалла:

Взаимная ориентация фазовой и лучевой скоростей.

Двойное лучепреломление – явление возникновения при падении на поверхность анизотропной среды плоской произвольно поляризованной волны двух преломленных линейно и взаимно перпендикулярно поляризованных плоских волн.

Открыто в 1669 г. датским физиком и математиком Эразмом Бартолином.

МЕТОД ПОСТРОЕНИЯ ГЮЙГЕНСА

Голландский ученый Христиан Гюйгенс в "Трактате о свете", написанном в 1678 г. (опубликованном в 1690 г.).

Основные положения:

1) каждая точка, до которой доходит возбуждение, становится источником вторичных волн, несущих световое возмущение (возникает лучевая двухоболочечная самопересекающаяся поверхность);

2) огибающая вторичных волн (касательная поверхность к лучевым поверхностям) определяет фронт волны в последующий момент времени.

Построение Гюйгенса дает направления нормали и луча:

- перпендикуляр к огибающей лучевой поверхности из источника вторичной волны дает направление нормали,

- прямая, соединяющая источник вторичной волны с точкой касания огибающей с лучевой поверхностью, дает направление луча.

Законы преломления для фазовых скоростей (нормалей)

(в формулировке как для изотропных сред)

1. Фазовые скорости (нормали к волновым фронтам) преломленных волн лежат в плоскости падения.

2. Отношение синусов углов между фазовыми скоростями (нормалями) и перпендикуляром к поверхности раздела равно отношению величин фазовых скоростей для сред по обе стороны границы раздела: $\frac{\sin \theta_i}{\sin \theta_t} = \frac{n_2}{n_1} = \frac{\upsilon_1}{\upsilon_2}$.

Для лучевых скоростей (лучей) таких законов нет, хотя непосредственно в эксперименте мы наблюдаем направление лучей, представляющие собой направление распространение световой энергии.

Характерные случаи построения Гюйгенса

при переходе света из изотропной среды в анизотропную среду (одноосный положительный кристалл – $\upsilon_0 > \upsilon_e$)

1. Оптическая ось перпендикулярна поверхности кристалла

2. Оптическая ось параллельна поверхности кристалла

Разность фаз ⇒ эллиптич. поляризация. Закон Этьена Луи Малюса (1808 г.):

При нормальном падении луча:

$$E_{\rm o} = E\sin\vartheta \to I_{\rm o} = I\sin^2\vartheta,$$

$$E_{\rm e} = E\cos\vartheta \to I_{\rm e} = I\cos^2\vartheta.$$

3. Оптическая ось под углом к поверхности кристалла

Поляризационные приборы

Поляроид – дихроичная пластинка, при прохождении которой один из лучей в результате поглощения <u>сильно ослабляется</u>, а другой выходит линейно поляризованным.

В основе – **явление** дихроизма – зависимость поглощения света от направления поляризации.

Кристаллы <u>турмалина</u> – эффективная толщина поглощения $d_{3\phi\phi} \cong 1$ мм, <u>герапатита</u> (английский физик Джон Герапат, 1852 г.) – $d_{3\phi\phi} \cong 0.1$ мм.

Пленочные полимерные поляроиды, состоящие из анизотропных макромолекул и дихроичных молекул (или нанокристаллов) вещества-активатора.

Поляризатор – поляроид, использующийся для получения поляризованного света.

Анализатор – поляроид, использующийся для анализа поляризованного света.

Поляризационная призма – комбинация кристаллов, оставляющая один поляризованный луч на выходе.

<u>Призма Николя</u> (шотландский ученый Уильям Николь – 1828 г.) – две призмы из Исландского шпата CaCO₃ ($n_0 = 1.658 > n_e = 1.486$), канадский бальзам ($n_0 > n = 1.55 > n_e$).

Двоякопреломляющая призма – комбинация кристаллов, оставляющая оба поляризованных луча на выходе.

<u>Призма</u> английского ученого Уильяма Хайда <u>Волластона</u> – два клина из Исландского шпата CaCO₃ (*n*_o > *n*_e).

Оптические устройства для управления поляризацией света

Компенсатор – пластина, вдоль которой непрерывно меняется разность фаз выходящих лучей.

<u>Компенсатор французского физика Жака Бабине,</u> тонкие кварцевые клинья с углом при вершине $\alpha << 1$ (SiO₂ – $n_0 = 1.543 < n_e = 1.552$). Оптическая разность хода:

$$\Delta = (n_{\rm e}d_1 + n_{\rm o}d_2) - (n_{\rm o}d_1 + n_{\rm e}d_2) = (n_{\rm e} - n_{\rm o})(d_1 - d_2),$$

$$\Delta \varphi = k_0 \Delta = \frac{2\pi}{\lambda_0} \Delta = \frac{2\pi}{\lambda_0} (n_{\rm e} - n_{\rm o})(d_1 - d_2).$$

Оптические пластинки – пластинки из оптически анизотропных кристаллов, вносящие заданную оптическую разность хода для необыкновенного и обыкновенного лучей:

$$\Delta = (n_{\rm e} - n_{\rm o})d,$$

$$\Delta \varphi = k_0 \Delta = \frac{2\pi}{\lambda_0} (n_{\rm e} - n_{\rm o})d.$$

Пластинка в четверть волны (четвертьволновая пластинка):

$$\Delta = (n_{\rm e} - n_{\rm o})d = \frac{\lambda_0}{4},$$
$$\Delta \phi = k_0 \Delta = \frac{2\pi}{\lambda_0} (n_{\rm e} - n_{\rm o})d = \frac{\pi}{2}.$$

Линейная поляризация \Leftrightarrow циркулярная при $\vartheta = 45^{\circ}$ или эллиптическая при $\vartheta \neq 45^{\circ}$ поляризация (+ $\Delta \vartheta = 90^{\circ}$ – смена направления поляризации).

Пластинка в полволны (полуволновая пластинка):

$$\Delta = (n_{\rm e} - n_{\rm o})d = \frac{\lambda_0}{2},$$
$$\Delta \phi = k_0 \Delta = \frac{2\pi}{\lambda_0} (n_{\rm e} - n_{\rm o})d = \pi.$$

Поворот линейной поляризации на 29 или изменение направления вращения плоскости поляризации в циркулярно (эллиптически) поляризованной волне.

Е_{вх} 99 9 9 *Е*вых

Наведенная анизотропия оптических свойств.

Механо- (электро-, магнито-) оптические эффекты – изменение оптических характеристик среды под внешним механическим (электрическим, магнитным) воздействием.

	N I I			U
			DHAIIIIIM	δουπομοτρικο
•	ЛПТИЧССКИС ЭШШСКТЫ.	вызванные	внсшним	BUSTERLIBREWL
_		221320000000		= • • • • • • • • • • • • • • • •

Воздействие	Тип эффекта	Эффект	Год	Авторы	
	Линейный (поперечный)			Немецкий физик	
Механиче-		Фотоупругость	1813	Томас Иоганн Зеебек,	
ское				Шотландский физик	
			1815	Дэвид Брюстер	
	Линейный	Помиони со		Немецкий физик	
Электриче- ское	(поперечный)	поккельса	1894	Фридрих Карл Поккель	
	Квадратичный	Vanna		Шотландский физик	
	(поперечный)	керра	1875	Джон Керр	
Магнитное	Квадратичный	Larray Muraua		Французские физики	
	(поперечный)	коттон-тутона	1907	Эме Коттон, А. Мутон	
	Расщепление	Doomana		Нидерландский физик	
	(прод. и попереч.)	зеемана	1896	Питер Зееман	
	Линейный	Фарадоя		Английский физик	
	(продольный)	Фарадея	1846	Майкл Фарадей	

Полосы: $\Delta \phi_{\kappa} = (2k+1)\pi$ – светлые, $\Delta \phi_{\kappa} = 2k\pi$ – темные. Сдвиг – $\Delta \phi(F)$. Фотоупругость – линейный механооптический эффект.

Мера возникшей оптической анизотропии – разность главных показателей преломления для необыкновенной $n_{\rm e}$ ($E_{\rm e} \parallel F$) и обыкновенной $n_{\rm o}$ ($E_{\rm o} \perp F$) волн (смена знака $\sigma \rightarrow$ смена знака $\Delta n(\omega)$):

$$n_{\rm e} - n_{\rm o} = \Delta n(\omega) = \gamma(\omega) \cdot F / S = \gamma(\omega) \cdot \sigma \ (\gamma > 0, \gamma < 0),$$

$$\Delta \varphi = k_0(\omega) (n_{\rm e}(\omega) - n_{\rm o}(\omega)) l = \frac{\omega}{c} \Delta n(\omega) l = \frac{2\pi}{\lambda_0(\omega)} \Delta n(\omega) l = \frac{\gamma(\omega)}{\lambda_0(\omega)} \cdot 2\pi\sigma l.$$

 $\gamma(\omega)$ – постоянная Брюстера, для стекол $\gamma(\omega) = 10^{-12} - 10^{-11} \text{ м}^2/\text{H}.$

Белый свет \Rightarrow окрашивание из-за зависимости набегающей разности фаз $\Delta \phi$ от частоты (в т.ч. дисперсии $-\Delta n(\omega)$) и распределения напряжения внутри образца.

Механизм – направленная механическая деформация тела.

Эффект Поккельса – линейный электрооптический эффект.

Схема опыта для обнаружения эффекта Поккельса (также, как и эффекта Керра) полностью аналогична схеме наблюдения фотоупругости. Единственное отличие – образец (твердое тело, жидкость или газ) помещается между обкладками плоского конденсатора.

<u>Механизм</u> – ангармонизм движения связанных зарядов в кристалле. Классическая электронная теория, модель ангармонического осциллятора (– $kx - \beta x^2$), $E_0 \parallel E(t), E_0 >> E(t)$:

$$E_0 \Rightarrow \Delta \omega_0^2 = \frac{2\beta q}{\omega_0^2 m^2} E_0 \Rightarrow \Delta n(\omega),$$

$$n_{\rm e} - n_{\rm o} = \Delta n(\omega) = -\frac{\omega_n^2}{2n(\omega_0^2 - \omega^2)^2} \cdot \frac{2\beta q}{\omega_0^2 m^2} E_0 = \gamma(\omega)E_0,$$

Для кристалла дигидрофосфата калия $KH_2PO_4 - \gamma = 3.6 \cdot 10^{-11}$ м/В, для ниобата лития $LiNbO_3 - \gamma = 3.7 \cdot 10^{-10}$ м/В.

Линейный оптический эффект наблюдается только в кристаллах, <u>не обладающих центром симметрии</u>.

Эффект Керра – квадратичный электрооптический эффект в <u>центрально-симметричных</u> средах (неизменность характеристик при преобразовании инверсии – смене направления *E*₀ на обратное).

Классическая электронная теория, модель ангармонического осциллятора (– $kx - \beta x^3$), $E_0 \parallel E(t), E_0 >> E(t)$:

$$n_{\rm e} - n_{\rm o} = \Delta n(\omega) = \gamma(\omega) E_0^2,$$

$$\Delta \phi = \frac{2\pi}{\lambda_0(\omega)} \Delta = \frac{2\pi}{\lambda_0(\omega)} (n_{\rm e} - n_{\rm o}) l = \frac{\gamma(\omega)}{\lambda_0(\omega)} 2\pi E_0^2 l = B(\omega) \cdot 2\pi E_0^2 l.$$

где $B(\omega) = \gamma(\omega) / \lambda_0(\omega)$ – постоянная Керра.

Механизм – поляризация и ориентация анизотропных молекул.

Для неполярных молекул B > 0, для полярных -B > 0 и B < 0.

Эффект Керра определяется свойствами молекул и, следовательно, усиливается с повышением концентрации молекул.

Для жидких кислорода и азота – ~ 10^{-10} м/B² и ~ $4 \cdot 10^{-10}$ м/B². Для них же в газообразном состоянии – ~ $4.5 \cdot 10^{-14}$ м/B² и ~ $3 \cdot 10^{-14}$ м/B².

С повышением температуры постоянная Керра падает из-за дезориентирующего действия температуры на дипольные моменты. Эффекты Поккельса и Керра практически безынерционны (время релаксации ~ 10^{-10} ÷ 10^{-13} с). \Rightarrow <u>ячейки Поккельса и Керра</u> – изотропный кристалл во внешнем поле с наведенной оптической осью и симметрично скрещенные под 90° два поляроида – высокоскоростные электрооптические модуляторы света (в том числе оптические затворы для лазеров).

Явление Коттон-Мутона – квадратичный магнитооптический эффект <u>в поперечном</u> магнитном поле:

$$n_{\rm e} - n_{\rm o} = \gamma(\omega) B_0^2 \ (\gamma \sim 10^{-8} \,\mathrm{Tm}^{-2}),$$

$$\Delta \varphi = \frac{2\pi}{\lambda_0(\omega)} \Delta = \frac{2\pi}{\lambda_0(\omega)} (n_{\rm e} - n_{\rm o}) l = \frac{\gamma(\omega)}{\lambda_0(\omega)} 2\pi B_0^2 l = C(\omega) \cdot 2\pi B_0^2 l.$$

<u>Механизм</u> – ориентация анизотропных молекул, <u>обладающих</u> μ (аналог. механизму поведения полярных молекул в эффекте Керра).

Этот эффект очень мал. Для нитробензола – $C \sim 2.10^{-2} \text{ м}^{-1} \text{Tr}^{-2}$. В магнитном поле 1 Тл при l = 10 см разность фаз равна $\Delta \phi \simeq 0.72^{\circ}$.

Эффект Зеемана – расщепление спектральных линий испускания (<u>прямой эффект</u>) и поглощения (<u>обратный эффект</u>) <u>в продольном</u> – ω_0 – $\Delta\omega$, ω_0 + $\Delta\omega$ и поперечном – ω_0 – $\Delta\omega$, ω_0 , ω_0 + $\Delta\omega$ магнитных полях.

С обратным эффектом Зеемана непосредств. связан эффект Фарадея.

Эффект Фарадея – магнитооптический эффект – явление вращения плоскости поляризации <u>в продольном</u> магнитном поле.

<u>Механизм</u> – изменение показателей преломления среды для циркулярно право- и левополяризованного света (<u>циркулярное дву-</u><u>лучепреломление</u>) из-за изменения собственных частот электронов во внешнем магнитном поле.

При световых частотах ω вдали от полос поглощения ω_0 , $\omega_0 - \Delta \omega_0$ и $\omega_0 + \Delta \omega_0$; а также при $\Delta \omega_0^2 << |\omega_0^2 - \omega^2|$, $n = (n_- + n_+)/2$:

$$\hat{n}^{2} = 1 + \omega_{\pi}^{2} \frac{1}{\omega_{0}^{2} - \omega^{2} + i2\delta\omega} \cong 1 + \omega_{\pi}^{2} \frac{1}{\omega_{0}^{2} - \omega^{2}},$$

$$n_{-}^{2} = 1 + \frac{\omega_{\pi}^{2}}{\omega_{0}^{2} - \Delta\omega_{0}^{2} - \omega^{2}}, n_{+}^{2} = 1 + \frac{\omega_{\pi}^{2}}{\omega_{0}^{2} + \Delta\omega_{0}^{2} - \omega^{2}},$$

$$n_{-} - n_{+} \cong \frac{\omega_{\pi}^{2}\Delta\omega_{0}^{2}}{n(\omega_{0}^{2} - \omega^{2})^{2}} = \frac{\omega_{\pi}^{2}}{n(\omega_{0}^{2} - \omega^{2})^{2}} \cdot \frac{|q|\omega_{0}}{m} B_{0} = \gamma(\omega)B_{0},$$

$$\Delta\phi = 2\pi \frac{n_{-} - n_{+}}{\lambda_{0}} l = \frac{\omega}{c}(n_{-} - n_{+})l = \frac{N|q|^{3}\omega\omega_{0}}{\varepsilon_{0}nm^{2}(\omega_{0}^{2} - \omega^{2})^{2}} lB_{0} = V(\omega)lH_{0},$$

где *V*(ω) – **постоянная Верде** (характеристика данного вещества).

Направление вращения плоскости поляризации определяется по отношению к направлению (вдоль) магнитного поля. Для положительных веществ направление поля и направление вращения составляют правовинтовую систему, для отрицательных – левовинтовую систему.

Направление вращения относительно поля от направления луча не зависит.

Если свет пройдет туда и обратно, то угол поворота увеличится.

В тонких прозрачных слоях ферромагнетиков (Fe, Ni, Co): при l = 0.1 мкм, $H_0 = 10$ к $\Im \cong 8 \cdot 10^5$ А/м: $\Delta \phi \cong 2^\circ$.

Естественное вращение плоскости поляризации

Естественное вращение плоскости поляризации (открыто французским ученым Домиником Франсуа Араго, 1811 г.).

При прохождении плоскополяризованного света через оптически активные (гиротропные) вещества (кристаллические – кварц; аморфные, в том числе чистые жидкости и растворы активных веществ – скипидар, никотин, водные растворы сахара) наблюдается вращение плоскости поляризации:

 $\varphi = \alpha(\omega) \cdot l \ (\alpha > 0, \ \alpha < 0),$

где $\alpha(\omega)$ – постоянная вращения (вращательная способность), в общем случае зависящая от длины волны. Для растворов линейно зависит от его концентрации.

Вдоль оптической оси кварца – α ~15÷50 град/мм.

<u>Механизм</u> – различие в скоростях света с разными направлениями круговой поляризации, обусловленное асимметрией молекул или асимметричным расположением атомов в кристалле (без центра и плоскостей симметрии, проходящих через нормаль к фронту волны).

Две модификации оптически активных веществ – правовращающая и левовращающая. Направление вращения определяется <u>по отношению к направлению (навстречу) распространения света (луча)</u>. Для правовращающих веществ плоскость поляризации вращается по часовой стрелке, для левовращающих – против.

Обе модификации естественно-активных веществ отличаются друг от друга внутренней кристаллической или молекулярной структурой. Обе модификации не конгруэнтны — они не могут быть совмещены в пространстве, но зеркальное изображение одной может быть совмещено с другой.

<u>Направление вращения по отношению к направлению света не</u> зависит от того, в каком из двух прямо противоположных направлений распространяется свет.

Если свет пройдет туда и обратно через естественно-активное вещество, то плоскость поляризации возвратится к исходному направлению.

Алексей Кузьменко (Alexey Kuzmenko) и его коллеги из Женевского университета (2010 г.) обнаружили, что **графен** поворачивает плоскость поляризации света на ~6°. Этот результат означает, что графен обладает значительно большим эффектом Фарадея на один атомный слой, чем любой другой материал, опередив, таким образом, своих ближайших конкурентов, полупроводников, в инфракрасной области спектра в 10 раз.

Данный эффект может быть использован для создания устройств-выключателей, в которых свет может двигаться только в одном направлении. Таких оптических диодов, известных как "изоляторы Фарадея", в настоящее время не существует для области инфракрасного спектра. Новое оптическое свойство графена найдет применение в области фотоники и оптоэлектроники.

Есть, однако, несколько проблем, возникающих при реализации подобных устройств. Одна из них заключается в том, что для достижения угла поворота плоскости поляризации в 45°, что необходимо в практических устройствах, требуется 10 независимых слоев графена. Еще одной проблемой является то, что графен поглощает инфракрасное излучение, что может привести к значительной потере сигнала в устройствах.

В 2004 году Андрей Гейм и Константин Новосёлов (выпускники ФИЗТЕХа) открыли принципиально новое вещество, названное ими **графеном**. Это новая – после алмаза, графита, карбина и фуллерена – модификация углерода, представляющая собой двумерную (плоскую) пленку из атомов углерода, расположенных в вершинах шестиугольников по принципу пчелиных сот. Всем известный графит получается, если составить стопку из слоев графена.

Графен – удивительное вещество. Пленка толщиной в один атом прозрачна, но обладает поразительной прочностью, в 200 раз превышающей прочность стали, и уникальной электропроводностью. Существование графена было теоретически предсказано еще в середине прошлого века, однако получить саму эту модификацию углерода долго не удавалось. Гейм и Новосёлов использовали отшелушивание слоев углерода с куска графита, но получить графен удалось только после использования атомно-силового микроскопа, причем на подложке из двуокиси кремния.

Рассеяние света

Рассеяние света – возмущение (в общем случае частичное поглощение и изменение интенсивности, частоты, поляризации) световых полей на оптических пространственных неоднородностях среды.

Оптические неоднородности – включения инородных частиц и флуктуации оптических свойств среды (тепл. флуктуации р, *c*, *E*', *p*_i).

Процесс рассеяния света состоит в заимствовании молекулой или частицей энергии у распространяющейся в среде волны и последующем излучении всей или части этой энергии.

Упругое рассеяние – частота рассеянного света ω_p равна частоте падающего света ω_n; <u>сохраняются фазовые соотношения между</u> <u>падающей и рассеянной волнами – когерентное</u> рассеяние.

Неупругое рассеяние – частота рассеянного света ω_p не равна частоте падающего света ω_{π} ; <u>фазовый сбой – некогерентн.</u> рассеяние.

Стоксово рассеяние – $\omega_p < \omega_n$. Антистоксово рассеяние – $\omega_p > \omega_n$.

Рэлеевское рассеяние – упругое когерентное рассеяние света на оптических неоднородностях, размеры которых $r << \lambda$

Виды (типы) рассеяния.

1. Молекулярное рассеяние – рэлеевское рассеяние света на тепловых <u>статистически независимых</u> (быстро затухающих, некоррелированных) флуктуациях оптических свойств макроскопически однородной среды, не содержащей примесей.

2. Рэлеевское рассеяние в дисперсных системах – на инородных частицах ($r \ll \lambda$), содержащихся в макроскопически однородной (дисперсной) среде.

3. Рассеяние Ми – упругое рассеяние в дисперсных системах на частицах с $r \ge \lambda$.

4. Рассеяние Мандельштама-Бриллюэна – неупругое рассеяние на изменениях плотности чистой макроскопически однородной конденсированной среды, в которой распространяются упругие волны (на слабо затухающих коррелированных флуктуациях плотности).

5. Комбинационное рассеяние – неупругое рассеяние света молекулами и атомами.

Возможно многократное рассеяние элементарными рассеивателями – как частицами, так и молекулами внутри частиц.

Дисперсные системы – системы, состоящие из множества мелких частиц (дисперсная фаза), распределенных в однородной среде (дисперсной среде).

Тонкодисперсные (высокодисперсные, коллоидные) системы $(10^{-9} \le r \le 10^{-7} \text{ м} = 0.1 \text{ мкм})$ – золи. Характерно интенсивное броуновское движение частиц.

Грубодисперсные $(r \ge 10^{-6} \text{ м} = 1 \text{ мкм})$ – суспензии, эмульсии, пары, туманы, пыли.

		Дисперсная фаза		
		Твердая	Жидкая	Газообр.
	Твердая	Молочные		
T		стекла		
дисперсная	Жидкая	Суспензия	Эмульсия	
среда	Газообр.	Аэрозоль	Аэрозоль	Пор
		(пыль, дым)	(туман)	IIap

Мутные среды – среды с явно выраженной оптической неоднородностью (аэрозоли – пыль, дым, туман; суспензии; эмульсии, пар и т.д.).

Явление Тиндаля (1869 г.) – рассеяние света мутной средой.

Индикатриса рассеяния – пространственная диаграмма зависимости интенсивности $I(r,\Omega)$ рассеянного света от телесного угла Ω (направления) рассеяния на данном расстоянии *r* от рассеивателя.

Полное сечение рассеяния (рассеивателем) σ – отношение полного потока энергии рассеянного света к интенсивности падающего излучения:

$$\sigma \equiv \frac{J}{I_0} = \frac{\int_0^{4\pi} I(r,\Omega) r^2 d\Omega}{I_0} = \int_0^{4\pi} \frac{I(r,\Omega) r^2}{I_0} d\Omega = \int_0^{4\pi} d\sigma, \ [\sigma] = M^2.$$

Дифференциальное сечение рассеяния (рассеивателем) – отношение потока энергии излучения, рассеянного в единицу телесного угла $dJ/d\Omega$, к интенсивности падающего излучения I_0 :

$$\frac{\mathrm{d}\sigma(\Omega)}{\mathrm{d}\Omega} \equiv \frac{\mathrm{d}J(\Omega)}{\mathrm{d}\Omega I_0} = \frac{I(r,\Omega)\mathrm{d}S}{\mathrm{d}\Omega I_0} = \frac{I(r,\Omega)r^2}{I_0}, \left[\frac{\mathrm{d}\sigma(\Omega)}{\mathrm{d}\Omega}\right] = \mathrm{M}^2.$$

Коэффициент рассеяния (телом) – отношение потока энергии излучения, рассеиваемого данным телом, к падающему на него потоку энергии излучения с поперечным сечением площадью *S*:

$$k_{s} \equiv \frac{J}{J_{0}(S)} = \frac{J}{I_{0}S} = \frac{\sigma}{S}, [k_{s}] = 1.$$

Ослабление интенсивности света. В результате рассеяния плотность потока энергии распространяющегося в среде света уменьшается.

Изменение плотности потока <u>I0</u> излучения при рассеянии света слоем dz пропорционально плотности падающего потока и толщине слоя:

 $I_0(z+dz) - I_0(z) = dI_0 = -\alpha_s I_0(z) dz, \ I_0(z) = I_0(0) e^{-\alpha_s z}.$

Здесь α_s – линейный коэффициент рассеяния ([α_s] = м⁻¹).

Пусть каждый из NSdz рассеивателей выводит из пучка поток энергии J(z), тогда поток излучения, рассеянного слоем dz, равен:

 $J(z)NSdz = \sigma I_0(z)NSdz = \alpha_s I_0(z)Sdz, \ \alpha_s = N\sigma.$

Для света с $\lambda = 5000$ Å коэффициент рассеяния в воздухе – $\alpha_s \sim 2.6 \cdot 10^{-5}$ м⁻¹(1/ $\alpha_s \sim 40$ км), в воде – $\alpha_s \sim 5 \cdot 10^{-3}$ м⁻¹(1/ $\alpha_s \sim 200$ м).

Элементарный рассеиватель

Угловое распределение интенсивности рассеянного излучения (индикатриса рассеяния) электрического поля падающей линейно поляризованной волны <u>аксиально симметрично вдоль направления</u> <u>напряженности</u> (см. рис.):

Падающий свет не поляризован (с естественной поляризацией):

$$I(\boldsymbol{n}) = I_{\mathrm{X}}(\vartheta_{x}) + I_{\mathrm{Y}}(\vartheta_{y}) \sim \frac{\sin^{2}\vartheta_{x} + \sin^{2}\vartheta_{y}}{2} = \frac{1 + \cos^{2}\vartheta_{z}}{2} = I(\vartheta_{z}).$$

 I_X и I_Y – интенсивности рассеянного света, который образован линейно поляризованными вдоль осей X и Y некоррелированными компонентами падающего света. Угловое распределение интенсивности излучения (индикатриса рассеяния) <u>аксиально симметрично</u> <u>вдоль направления падающей волны</u>. Здесь $n = (\cos \theta_x, \cos \theta_y, \cos \theta_z)$.

Неполяризованный свет, рассеянный под углом к первичному пучку, становится частично поляризованным.

Степень поляризации:
$$P \equiv \frac{I_{\perp} - I_{\parallel}}{I_{\perp} + I_{\parallel}}$$
,

 $\begin{array}{c}
P(\vartheta_z) \\
1.0 \\
0.8 \\
0.6 \\
0.4 \\
0.2 \\
0.0 \\
0^\circ \\
\vartheta_z \\
\begin{array}{c}
90^\circ
\end{array}$

где
$$I_{\parallel}$$
 и I_{\perp} – интенсивности рассеянного света, который поляризован вдоль и поперек плоскости (n_0, n) .

Если ось X \perp (n_0 , n), то $\vartheta_x = \pi/2$, $\vartheta_y = \pi/2 - \vartheta_z$ и

$$P = \frac{I_{\rm X} - I_{\rm Y}}{I_{\rm X} + I_{\rm Y}} = \frac{\sin^2 \vartheta_x - \sin^2 \vartheta_y}{\sin^2 \vartheta_x + \sin^2 \vartheta_y} = \frac{1 - \cos^2 \vartheta_z}{1 + \cos^2 \vartheta_z} = \frac{\sin^2 \vartheta_z}{1 + \cos^2 \vartheta_z} = P(\vartheta_z).$$

Молекулярное рассеяние света

Молекулярное рассеяние – рэлеевское (упругое, при $r \ll \lambda$) рассеяние света на тепловых <u>статистически независимых флуктуациях</u> оптических свойств макроскопически однородной среды, не содержащей примесей.

А. Статистическая теория рассеяния

Для разреженных газов – в 1908 г. (польск.) Мариан Смолуховский. Для жидкостей – в 1910 г. (немецк.) Альберт Эйнштейн.

Основные положения:

- размеры оптических неоднородностей малы по сравнению с длиной волны света;
- положение каждой области неоднородности не зависит от положений других областей;
- взаимодействием областей неоднородности можно пренебречь.

<u>Основная причина</u> статистических (тепловых) флуктуаций оптических свойств – <u>флуктуация плотности среды</u>. При этом будет флуктуировать и диэлектрическая проницаемость $\varepsilon = \varepsilon(\rho, T)$:

$$\Delta \varepsilon = \left(\frac{\partial \varepsilon}{\partial \rho}\right)_T \Delta \rho + \left(\frac{\partial \varepsilon}{\partial T}\right)_\rho \Delta T \cong \left(\frac{\partial \varepsilon}{\partial \rho}\right)_T \Delta \rho.$$

Рассеяние обусловлено наличием флуктуации электрического дипольного момента выделенных объемов V_j оптической неоднородности $p_{V_j} = V_j \mathbf{P} = V_j \varepsilon_0 (\varepsilon_j - 1) \mathbf{E}_0$:

$$\Delta \boldsymbol{p}_{V_j} = V_j \varepsilon_0 \Delta \varepsilon_j \boldsymbol{E}_0 = V_j \varepsilon_0 \left(\frac{\partial \varepsilon}{\partial \rho} \right)_T \Delta \rho_j \boldsymbol{E}_0.$$

Рассеяние <u>на молекулах</u> каждой оптической неоднородности упруго и когерентно. <u>Напряженность электрического поля рассеян-</u> ного света на этой неоднородности равна сумме напряженностей полей света, рассеянного каждой молекулой. Следовательно:

$$E_{j} = \frac{\omega^{2}}{4\pi\varepsilon_{0}c^{2}r}\Delta p_{V_{j}}\sin\vartheta = E_{0}\frac{\omega^{2}}{4\pi c^{2}r}\left(\frac{\partial\varepsilon}{\partial\rho}\right)_{T}\Delta\rho_{j}V_{j}\sin\vartheta.$$
$$I_{j} = \left\langle E_{j}^{2}\right\rangle = I_{0}\frac{\omega^{4}}{(4\pi c^{2}r)^{2}}\left(\frac{\partial\varepsilon}{\partial\rho}\right)_{T}^{2}\overline{(\Delta\rho_{j}V_{j})^{2}}\sin^{2}\vartheta.$$

Поскольку $\rho_j = m_j / V_j$, то для выделенной массы m_j среды при малых флуктуациях $\frac{\Delta \rho_j}{\rho_j} = -\frac{\Delta V_j}{V_j}$ и $\overline{(\Delta \rho_j V_j)^2} = \overline{(\rho_j \Delta V_j)^2} \cong \overline{\rho(\Delta V_j)^2}$.

Рассеяние <u>на совокупности областей</u> оптической неоднородности <u>не когерентно</u> и интенсивность рассеянного света равна сумме интенсивностей света, рассеянного отдельными областями. В результате при <u>рассеянии на статистически независимых тепловых флукту-</u> ациях плотности в совокупности объемов $\{V_i\}$ получим:

$$I = \sum_{j} I_{j} \cong I_{0} \frac{\omega^{4}}{(4\pi c^{2}r)^{2}} \left(\rho \frac{\partial \varepsilon}{\partial \rho}\right)_{T}^{2} \sum_{j} \overline{(\Delta V_{j})^{2}} \sin^{2} \vartheta.$$

Формула Эйнштейна для рассеяния света в жидкостях и плотных газах.

Пусть объем выделенной части жидкости или газа флуктуирует

при данной температуре <u>на малую величину</u> ΔV_j. В первом приближении:

$$\frac{\Delta P_j}{\Delta V_j} \bigg|_T \cong \alpha_j - const(V_j) < 0.$$

Работа сил давления при флуктуации будет равна:

$$\Delta A_{j} = \int_{\overline{V}_{j}}^{V_{j} + \Delta V_{j}} (\overline{P} + \Delta P_{j}) dV = \int_{0}^{\Delta V_{j}} (\overline{P} + \alpha_{j} \Delta V_{j}) d(\Delta V_{j}) = \overline{P} \Delta V_{j} + \frac{\alpha_{j}}{2} (\Delta V_{j})^{2}.$$

Пусть процессы флуктуаций достаточно быстры по сравнению со скоростью обмена энергией между выделенной частью и средой. В соответствии с первым началом термодинамики для выделенной части при адиабатических процессах $\Delta Q_j = \Delta U_j + \Delta A_j = 0$. Воспользуемся теоремой о равнораспределении энергии по степеням свободы для термодинамической системы в состоянии равновесия:

$$\overline{\Delta U_j} = -\overline{\Delta A_j} = -\overline{P\Delta V_j} - \frac{\alpha_j}{2} \overline{(\Delta V_j)^2} = -\frac{\alpha_j}{2} \overline{(\Delta V_j)^2} = \frac{1}{2} kT,$$

$$\overline{(\Delta V_j)^2} = -\frac{kT}{\alpha_j}.$$

В то же время изотермическая сжимаемость $\beta_T \equiv -\frac{1}{V_i} \left(\frac{\partial V_j}{\partial P_i} \right)_{\tau}$

и
$$\alpha_j \cong \left(\frac{\Delta P_j}{\Delta V_j}\right)_T \cong -\frac{1}{V_j \beta_T}$$
. Таким образом
 $\overline{(\Delta V_j)^2} = V_j \beta_T kT$ и $\sum_j \overline{(\Delta V_j)^2} = V \beta_T kT$.

В результате получим **формулу** Эйнштейна для рассеяния света <u>в жидкостях и плотных газах:</u>

$$I = I_0 \frac{\omega^4}{(4\pi c^2 r)^2} \left(\rho \frac{\partial \varepsilon}{\partial \rho}\right)_T^2 V \beta_T kT \sin^2 \vartheta.$$

Формула Рэлея. В случае <u>разряженных газов</u> воспользуемся <u>уравнением состояния</u> $P_jV_j = N_i kT$:

$$\beta_T \equiv -\frac{1}{V_j} \left(\frac{\partial V_j}{\partial P_j} \right)_T = \frac{1}{V_j} N_j kT \frac{1}{P_j^2} = \frac{1}{P_j}$$
$$\beta_T kT = \frac{kT}{P_j} = \frac{V_j}{N_j} \cong \frac{1}{N},$$

где N_j – число молекул (атомов) в объеме V_j , N – средняя концентрация молекул, одинаковая по всем объемам V_j .

Воспользуемся выражением для диэлектрической проницаемо-

сти газа
$$\varepsilon - 1 = N\beta = N_A \frac{\rho}{\mu}\beta$$
:
 $\rho \frac{\partial \varepsilon}{\partial \rho} = \rho N_A \frac{1}{\mu}\beta = \varepsilon - 1 = n^2 - 1 \cong 2(n-1),$

где β – поляризуемость молекулы. В результате получим **формулу Рэлея** для рассеяния света в разреженном газе:

$$I = I_0 \frac{\omega^4}{(4\pi c^2 r)^2} 4(n-1)^2 \frac{V}{N} \sin^2 \vartheta.$$

Важнейшие особенности молекулярного рассеяния

Формула Эйнштейна (для жидкостей и плотных газов):

$$I = I_0 \frac{\omega^4}{(4\pi c^2 r)^2} \left(\rho \frac{\partial \varepsilon}{\partial \rho}\right)_T^2 V \beta_T kT \sin^2 \vartheta.$$

Формула Рэлея (для разреженных газов):

$$I = I_0 \frac{\omega^4}{(4\pi c^2 r)^2} 4(n-1)^2 \frac{V}{N} \sin^2 \vartheta.$$

1. Индикатриса интенсивности рассеянного света – <u>как у эле-</u> ментарного рассеивателя:

- линейно поляризованное излучение – $I(\Omega) \sim \sin^2 \vartheta$,

- естественная поляризация – $I(\Omega) \sim \frac{1 + \cos^2 \vartheta_z}{2}$.

2. Поляризация рассеянного света:

- от изотропных молекул – <u>как у элементарного рассеивателя</u>:

степень поляризации –
$$P(\vartheta_z) \equiv \frac{I_{\perp} - I_{\parallel}}{I_{\perp} + I_{\parallel}} = \frac{\sin^2 \vartheta_z}{1 + \cos^2 \vartheta_z};$$

- от анизотропных молекул – деполяризация света при $\vartheta_z = \pi/2$;

коэффициент деполяризации – $\gamma \equiv \frac{I_{\parallel}}{I_{\perp}} (\vartheta_z = \pi/2),$

(газы – $\gamma \sim 10^{-2}$, жидкости – $\gamma \sim 0.1 \div 1$).

3. Закон Рэлея – I ~ω⁴ ~1/λ⁴ – как у элементарного рассеивателя.
 4. Критическая опалесценция – явление возрастания интенсивности рассеянного излучения вблизи критич. температуры из-за возрастания флуктуаций и соответственно возрастания изот. сжим.

$$\beta_T = -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \ \mathbf{H} \left(\frac{\partial \mathbf{\epsilon}}{\partial \mathbf{\rho}} \right)_T.$$

5. Селективное по частоте рассеяние – интенсивность рассеянного излучения возрастает вблизи собственных частот элементарного рассеивателя $\omega \sim \omega_0$, поскольку $I \sim (n-1)^2$.

Рассеяние Рэлея в дисперсных системах

Рэлеевское (упругое, при $r \ll \lambda$) рассеяние света на содержащихся в макроскопически однородной среде частицах, линейные размеры *r* которых значительно меньше длины волны λ , аналогично упругому рассеянию молекулой.

Случайное распределение в диэлектрической среде (ε) одинаковых диэлектрических шариков (ε_1) радиуса $r \ll \lambda$ на расстояниях друг от друга l >> r.

Основываясь на законах электростатики, можно показать, что под действием поля E_0 дополнительная поляризация в области шариков равна

$$\Delta \boldsymbol{P} = \frac{3\varepsilon_0(\varepsilon_1 - \varepsilon)\varepsilon}{\varepsilon_1 + 2\varepsilon}\boldsymbol{E}_0.$$

Дипольный момент этой области $V_1 - \Delta \mathbf{p} = V_1 \Delta \mathbf{P} = V_1 \frac{3\varepsilon_0(\varepsilon_1 - \varepsilon)\varepsilon}{\varepsilon_1 + 2\varepsilon} \mathbf{E}_0.$

Интенсивность света, рассеянного одним шариком:

$$I_1 = \frac{\omega^4}{\left(4\pi\varepsilon_0 c^2 r\right)^2} \overline{(\Delta p)^2} \sin^2 \vartheta = I_0 \left(\frac{3\varepsilon}{4\pi c^2 r}\right)^2 \omega^4 V_1^2 \left(\frac{\varepsilon_1 - \varepsilon}{\varepsilon_1 + 2\varepsilon}\right)^2 \sin^2 \vartheta.$$

Интенсивность света, рассеиваемого <u>всеми шариками</u> в объеме на расстояниях $L >> \sqrt[3]{V}$ (Джон Уильям Рэлей, 1871 г.):

$$I = NVI_1 = I_0 NV \left(\frac{3\varepsilon}{4\pi c^2 r}\right)^2 \omega^4 V_1^2 \left(\frac{\varepsilon_1 - \varepsilon}{\varepsilon_1 + 2\varepsilon}\right)^2 \sin^2 \vartheta.$$

N – концентрация шариков (рассеивающих частиц) в среде.

Основные особенности:

1 – индикатриса рассеяния – как в случае молекулярного рассеяния;

- 2 поляризация как в случае молекулярного рассеяния;
- 3 закон Рэлея как в случае молекулярного рассеяния;
- 4 сильная зависимость от размера частиц r^6 .
- **5** сильная зависимость от разности проницаемостей: $\sim (\epsilon_1 \epsilon)^2$.

Рассеяние Ми

Рассеяние Ми – упругое рассеяние на содержащихся в макроскопически однородной среде мелкодисперсных частицах, линейные размеры которых порядка и больше λ ($r > \lambda$).

Строгая теория разработана Густавом Адольфом Ми (1908 г.). Теория сводится к решению уравнений Максвелла с граничными условиями на поверхности сферической частицы произвольного радиуса *r*, характеризуемой диэлектрической и магнитной проницаемостями и электропроводностью. Теория упругого рассеяния Ми <u>учи-</u> <u>тывает размеры частиц</u> – с малым параметром $\alpha = kr = 2\pi \frac{r}{\lambda}$. При

 $\alpha < 0.2$ рассеяние становится Рэлеевским (при $r \ll \lambda$) как предельный случай рассеяния Ми.

Некоторые результаты громоздкой и сложной теории Ми.

1. Индикатриса рассеяния.

С увеличением размера частиц (r/λ) <u>преобладает рассеяние вперед</u> без резких максимумов и минимумов ($r < \lambda$).

При дальнейшем увеличении размеров частиц r до λ и более (при $\varepsilon > 1$) в индикатрисе рассеяния <u>появляются резкие максимумы и</u> <u>минимумы</u> — вблизи так называемых **резонансов Ми** ($2r = m\lambda$, m = 1, 2, 3...), рассеяние вперед усиливается, назад — ослабевает.

2. Рассеянный свет частично поляризован даже при неполяризованном падающем излучении. Характер поляризации зависит от оптических свойств частицы и от направления рассеяния, зависимость поляризации от угла рассеяния усложняется.

3. Слабая зависимость интенсивности рассеянного света от длины волны.

Проявления рассеяния Ми: белые облака; белесый оттенок неба при задымлении; небо сереет к горизонту; почти полная непрозрачность тумана.

Основные причины различий рассеяния Ми от рэлеевского рассеяния

1. Влияние переизлучения первичной волны элементарными рассеивателями одной частицы.

2. Различия в фазах излучения элементарных рассеивателей изза расстояния между элементарными рассеивателями и их зависимость от направления рассеивания.

В грубодисперсных средах при $r >> \lambda$ процесс рассеяния рассматривается на основе геометрической оптики с учетом интерференции лучей, отраженных и преломленных на поверхности частиц – <u>дифракции</u>.

Важная особенность – периодический характер зависимости интенсивности по углу и по отношению размера частицы к длине волны. Эта периодичность обуславливает ореолы, радуги, гало и другие явления, происходящие в аэрозолях, туманах и т.д.

Рассеяние Мандельштама-Бриллюэна

Рассеяние Мандельштама-Бриллюэна – неупругое рассеяние на изменениях плотности <u>чистой макроскопически однородной кон</u><u>денсированной среды</u>, <u>в которой распространяются упругие волны</u> (на <u>слабозатухающих коррелированных флуктуациях плотности</u>).

Предсказано русским ученым Леонидом Исааковичем Мандельштамом в 1918 г. и франц. физиком Леоном Бриллюэном в 1922 г.

Обнаружено советским физиком-экспериментатором Евгением Федоровичем Гроссом в 1930 г.

Коррелированные флуктуации плотности можно рассматривать как <u>совокупность упругих волн</u>, распространяющихся в конденсированной среде по <u>всевозможным направлениям</u> и обладающих <u>всевозможными частотами</u> Ω и <u>фазами</u>.

Этим волнам соответствуют гармонические распределения оптической неоднородности среды в пространстве и времени, которые приводят к модуляции амплитуды и фазы рассеянного света. В результате возникает <u>дифракция света на упругих волнах</u> – рассеяние с изменением частоты дифрагированного света.

Если в среде распространяется плоская монохроматическая волна с частотой ω_0 и волновым вектором k_0 : $E_0 = a_0 \cos(\omega_0 t - k_0 \cdot r)$, которая встречает бегущую упругую волну с частотой Ω и волновым вектором q: $\delta \rho = \delta \rho_0 \cos(\Omega t - q \cdot r)$, то максимум дифрагировавшего света будет виден в направлении, отвечающем условию Брэгга-Вульфа (с учетом $k = \omega/\lambda \cong k_0 = \omega/\lambda_0 >> q = \Omega/\Lambda - условию век$ торного синхронизма):

В соответствии с условием Брэгга-Вульфа можно связать между собой частоты световой $\omega_0 = k_0 \upsilon$ и упругой $\Omega = qV$ волн с углом рассеяния 9:

 $\frac{\Omega}{\omega_0} = 2 \frac{V}{\upsilon} \sin \frac{\vartheta}{2} - \phi o p м y ла Мандельштама-Бриллюэна.$ Как видим, при $\vartheta \uparrow \rightarrow \Omega \uparrow, \Lambda \downarrow$. <u>Амплитуда рассеянного света</u>, дифрагировавшего на упругой волне, в соответствии с теорией рассеяния будет <u>модулирована</u> бегущей упругой волной (коррелиров. флуктуациями плотности):

 $E(t) \sim E_0(t) \cdot \delta\rho(t) \sim \cos(\omega_0 t) \cdot \cos(\Omega t) = \frac{\cos((\omega_0 - \Omega)t) + \cos((\omega_0 + \Omega)t)}{2}$

В рассеянном свете наблюдаются стоксов и антистоксов сателлиты с частотами ω₀ – Ω и ω₀ + Ω – компоненты Мандельштама-Бриллюэна (тонкая структура спектральной линии Рэлея).

Для каждой упругой волны с частотой Ω существует две рассеянные волны под углами $\pm \vartheta$ с частотами $\omega_0 \pm \Omega$. При этом под бо́льшими углами рассеяния наблюдается бо́льшее частотное смещение ($\Delta v_{ME} = \pm \Omega$) компонент М.-Б (в соотв. с формулой М.-Б). Обе частотные компоненты имеют ширину $\delta v_{ME} \sim 10^8$ Гц, связанную со временем затухания звуковой волны: $\delta v_{ME} \sim 1/\tau_{3B}$.

Рассеяние М.-Б. монохроматич. света приводит к появлению частотных компонент, расположенных симметрично относительно исходной линии, в твердом теле – шести, в жидкостях – двух. Поскольку в одном направлении с разными скоростями (и частотами) распространяются в твердом теле в общем случае три волны, одна продольная и две поперечные, а в жидкости только одна продольная волна.

Центральные компоненты в спектре связаны:

- с <u>более медленными некореллированными флуктуациями</u> <u>плотности и концентрации экспоненциального типа</u>, что не изменяет частоту, а определяет ширину спектральной линии δν₀ ~10⁶ Гц.

- с <u>некореллированными флуктуациями анизотропии оптических</u> <u>свойств жидкости</u> – спонтанным вращениям молекул с характерным временем ~10⁻¹² с, которые приводят к модуляции интенсивности рассеянного света, и заметному его уширению; в результате возникает широкая полоса с максимумом на частоте возбуждающего света и шириной δν_{кр} ~10¹² Гц. – крыло линии Рэлея.

Комбинационное рассеяние

Комбинационное рассеяние (эффект Рамана) – неупругое рассеяние света молекулами (атомами, ионами). Обнаружено в 1928 г.: - <u>в твердом теле</u> – Леонид Исаакович Мандельштам (зав. каф. теор. физики МГУ) и Григорий Самуилович Ландсберг (проф. МГУ), - <u>в жидкости</u> – индийские физики Ч.В. Раман и К.С. Кришнан.

Классическое представление

Амплитуда рассеиваемого света модулируется (поскольку меняются оптические свойства молекулы) <u>гармоническим внутримоле-</u> кулярным (внутриатомным) движением с частотой ω_i :

$$E(t) \sim (1 + \alpha \cos(\omega_i t)) \cos(\omega_0 t) = \cos(\omega_0 t) + \frac{\alpha}{2} (\cos((\omega_0 - \omega_i)t) + \cos((\omega_0 + \omega_i)t))).$$

Квантовое представление

Световой квант (фотон) – $\hbar \omega_0 (\hbar \cong 1.05 \cdot 10^{-34} \, \text{Дж} \cdot \text{с}).$

Квант внутриатомных (внутримолекулярных) колебаний – $\hbar \omega_i$.

Рассеяние света – столкновение фотонов с молекулами. Упругое столкновение – $\hbar\omega = \hbar\omega_0$, $\omega = \omega_0$.

Неупругое столкновение – $\hbar \omega = \hbar \omega_0 \pm \hbar \omega_i$, $\omega = \omega_0 \pm \omega_i$.

Частота рассеянного света комбинируется из частоты падающего света ω_0 и частот ω_i внутримолекулярного колебания.

Закономерности комбинационного рассеяния.

1. В спектре рассеянного света наблюдаются сателлиты, сопровождающие каждую спектральную линию падающего света.

2. Число сателлитов, разности частот спектральной линии и сателлитов $\Delta v_i \sim 10^{12} \Gamma$ ц, характер их поляризации, <u>не зависят от часто-</u> <u>ты спектральной линии</u> и <u>характерны для рассеивающего вещества</u>.

3. Сателлиты образуют <u>две симметричные системы линий</u> относительно спектральной линии падающей волны: с меньшими частотами – красные (<u>стоксовы</u>), с большими – фиолетовые (<u>антистоксовы</u>).

4. <u>Интенсивности</u> красных спутников значительно больше, чем фиолетовых, с повышением температуры интенсивности их быстро выравниваются.